ﻻ يوجد ملخص باللغة العربية
We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position $Q(P)$ of any test particle $P$, by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time $t$ and position $P$ by proper interpolation of initial conditions, following Liouville theorem. When distorsion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four or six-dimensional phase-space. It can also be trivially generalised to plasmas.
We study analytically the collapse of an initially smooth, cold, self-gravitating collisionless system in one dimension. The system is described as a central S shape in phase-space surrounded by a nearly stationary halo acting locally like a harmonic
Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in
In this paper, our goal is to efficiently solve the Vlasov equation on GPUs. A semi-Lagrangian discontinuous Galerkin scheme is used for the discretization. Such kinetic computations are extremely expensive due to the high-dimensional phase space. Th
The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov--Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian disco
We revisit in one dimension the waterbag method to solve numerically Vlasov-Poisson equations. In this approach, the phase-space distribution function $f(x,v)$ is initially sampled by an ensemble of patches, the waterbags, where $f$ is assumed to be