ﻻ يوجد ملخص باللغة العربية
Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincare invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a warm dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.
We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position $Q(P)$ of any test particle $P$, by exp
We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Vo
We revisit in one dimension the waterbag method to solve numerically Vlasov-Poisson equations. In this approach, the phase-space distribution function $f(x,v)$ is initially sampled by an ensemble of patches, the waterbags, where $f$ is assumed to be
We present a new method for evolving the equations of magnetohydrodynamics (both Newtonian and relativistic) that is capable of maintaining a divergence-free magnetic field ($ abla cdot mathbf{B} = 0$) on adaptively refined, conformally moving meshes
We describe a finite-volume method for solving the Poisson equation on oct-tree adaptive meshes using direct solvers for individual mesh blocks. The method is a modified version of the method presented by Huang and Greengard (2000), which works with