ﻻ يوجد ملخص باللغة العربية
We study analytically the collapse of an initially smooth, cold, self-gravitating collisionless system in one dimension. The system is described as a central S shape in phase-space surrounded by a nearly stationary halo acting locally like a harmonic background on the S. To resolve the dynamics of the S under its self-gravity and under the influence of the halo, we introduce a novel approach using post-collapse Lagrangian perturbation theory. This approach allows us to follow the evolution of the system between successive crossing times and to describe in an iterative way the interplay between the central S and the halo. Our theoretical predictions are checked against measurements in entropy conserving numerical simulations based on the waterbag method. While our post-collapse Lagrangian approach does not allow us to compute rigorously the long term behavior of the system, i.e. after many crossing times, it explains the close to power-law behavior of the projected density observed in numerical simulations. Pushing the model at late time suggests that the system could build at some point a very small flat core, but this is very speculative. This analysis shows that understanding the dynamics of initially cold systems requires a fine grained approach for a correct description of their very central part. The analyses performed here can certainly be extended to spherical symmetry.
We develop a new perturbation theory (PT) treatment that can describe gravitational dynamics of large-scale structure after shell-crossing in the one-dimensional cosmological case. Starting with cold initial conditions, the motion of matter distribut
We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position $Q(P)$ of any test particle $P$, by exp
We revisit in one dimension the waterbag method to solve numerically Vlasov-Poisson equations. In this approach, the phase-space distribution function $f(x,v)$ is initially sampled by an ensemble of patches, the waterbags, where $f$ is assumed to be
We present the one-loop 2-point function of biased tracers in redshift space computed with Lagrangian perturbation theory, including a full resummation of both long-wavelength (infrared) displacements and associated velocities. The resulting model ac
Self-gravitating quantum matter may exist in a wide range of cosmological and astrophysical settings from the very early universe through to present-day boson stars. Such quantum matter arises in a number of different theories, including the Peccei-Q