ترغب بنشر مسار تعليمي؟ اضغط هنا

Insight into the temperature dependent properties of the ferromagnetic Kondo lattice YbNiSn

70   0   0.0 ( 0 )
 نشر من قبل Dmitry Sokolov A
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analyzing temperature dependent photoemission (PE) data of the ferromagnetic Kondo-lattice (KL) system YbNiSn in the light of the Periodic Anderson model (PAM) we show that the KL behavior is not limited to temperatures below a temperature T_K, defined empirically from resistivity and specificic heat measurements. As characteristic for weakly hybridized Ce and Yb systems, the PE spectra reveal a 4f-derived Fermi level peak, which reflects contributions from the Kondo resonance and its crystal electric field (CEF) satellites. In YbNiSn this peak has an unusual temperature dependence: With decreasing temperature a steady linear increase of intensity is observed which extends over a large interval ranging from 100 K down to 1 K without showing any peculiarities in the region of T_K ~ TC= 5.6 K. In the light of the single-impurity Anderson model (SIAM) this intensity variation reflects a linear increase of 4f occupancy with decreasing temperature, indicating an onset of Kondo screening at temperatures above 100 K. Within the PAM this phenomenon could be described by a non-Fermi liquid like T- linear damping of the self-energy which accounts phenomenologically for the feedback from the closely spaced CEF-states.

قيم البحث

اقرأ أيضاً

In this study we report the results of study of novel ternary $Np_2PtGa_3$ compound. The x-ray-powder diffraction analysis reveals that the compound crystallizes in the orthorhombic CeCu$_2$-type crystal structure (space group Imma) with lattice para meters $a$ = 0.4409(2) nm, $b$ = 0.7077(3) nm and $c$ = 0.7683(3) nm at room temperature. The measurements of dc magnetization, specific heat and electron transport properties in the temperature range 1.7 - 300 K and in magnetic fields up to 9 T imply that this intermetallic compound belongs to a class of ferromagnetic Kondo systems. The Curie temperature of $T_C sim$ 26 K is determined from the magnetization and specific heat data. An enhanced coefficient of the electronic specific heat of $gamma$ = 180 mJ/(mol at. Np K$^2$) and -lnT dependence of the electrical resistivity indicate the presence of Kondo effect, which can be described in terms of the S = 1 underscreened Kondo-lattice model. The estimated Kondo temperature $T_K sim$ 24 K, Hall mobility of $sim$ 16.8 cm$^2$/Vs and effective mass of $sim$ 83 $m_e$ are consistent with assumption that the heavy-fermion state develops in $Np_2PtGa_3$ at low temperatures. We compare the observed properties of $Np_2PtGa_3$ to that found in $Np_2PtGa_3$ and discuss their difference in regard to change in the exchange interaction between the conduction and localized 5f electrons. We have used the Fermi wave vector $k_F$ to evaluate the Rudermann-Kittel-Kasuya-Yosida (RKKY) exchange. Based on experimental data of the (U, Np)$_2$(Pd, Pt)Ga$_3$ compounds we suggest that the evolution of the magnetic ground states in these actinide compounds can be explained within the RKKY formalism.
We report the temperature-pressure-magnetic field phase diagram made from electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice CeRuPO. The ground state at zero field changes from the FM state to another state, which is suggest ed to be an antiferromagnetic (AFM) state, above ~0.7 GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa. In addition to the collapse of the AFM state under pressure and a magnetic field, a metamagnetic (MM) transition from a paramagnetic state to a polarized paramagnetic state appears. CeRuPO will give us a rich playground for understanding the mechanism of the MM transition under comparable FM and AFM correlations in the Kondo lattice.
We have studied the ferromagnetic Kondo lattice model (FKLM) with an Anderson impurity on finite chains with numerical techniques. We are particularly interested in the metallic ferromagnetic phase of the FKLM. This model could describe either a quan tum dot coupled to one-dimensional ferromagnetic leads made with manganites or a substitutional transition metal impurity in a MnO chain. We determined the region in parameter space where the impurity is empty, half-filled or doubly-occupied and hence where it is magnetic or nonmagnetic. The most important result is that we found, for a wide range of impurity parameters and electron densities where the impurity is magnetic, a singlet phase located between two saturated ferromagnetic phases which correspond approximately to the empty and double-occupied impurity states. Transport properties behave in general as expected as a function of the impurity occupancy and they provide a test for a recently developed numerical approach to compute the conductance. The results obtained could be in principle reproduced experimentally in already existent related nanoscopic devices or in impurity doped MnO nanotubes.
216 - A. Schwabe , W. Nolting 2009
We present an new approach for the ferromagnetic, three-dimensional, translational-symmetric Kondo lattice model which allows us to derive both magnon energies and linewidths (lifetimes) and to study the properties of the ferromagnetic phase at finit e temperatures. Both anomalous softening and anomalous damping are obtained and discussed. Our method consists of mapping the Kondo lattice model onto an effective Heisenberg model by means of the modified RKKY interaction and the interpolating self-energy approach. The Heisenberg model is approximatively solved by applying the Dyson-Maleev transformation and using the spectral density approach with a broadened magnon spectral density.
331 - S. Henning , W. Nolting 2009
The magnetic ground state phase diagram of the ferromagnetic Kondo-lattice model is constructed by calculating internal energies of all possible bipartite magnetic configurations of the simple cubic lattice explicitly. This is done in one dimension ( 1D), 2D and 3D for a local moment of S = 3/2. By assuming saturation in the local moment system we are able to treat all appearing higher local correlation functions within an equation of motion approach exactly. A simple explanation for the obtained phase diagram in terms of bandwidth reduction is given. Regions of phase separation are determined from the internal energy curves by an explicit Maxwell construction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا