ترغب بنشر مسار تعليمي؟ اضغط هنا

Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild

91   0   0.0 ( 0 )
 نشر من قبل Zhenhua Feng
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a framework for robust face detection and landmark localisation of faces in the wild, which has been evaluated as part of `the 2nd Facial Landmark Localisation Competition. The framework has four stages: face detection, bounding box aggregation, pose estimation and landmark localisation. To achieve a high detection rate, we use two publicly available CNN-based face detectors and two proprietary detectors. We aggregate the detected face bounding boxes of each input image to reduce false positives and improve face detection accuracy. A cascaded shape regressor, trained using faces with a variety of pose variations, is then employed for pose estimation and image pre-processing. Last, we train the final cascaded shape regressor for fine-grained landmark localisation, using a large number of training samples with limited pose variations. The experimental results obtained on the 300W and Menpo benchmarks demonstrate the superiority of our framework over state-of-the-art methods.

قيم البحث

اقرأ أيضاً

We present a new loss function, namely Wing loss, for robust facial landmark localisation with Convolutional Neural Networks (CNNs). We first compare and analyse different loss functions including L2, L1 and smooth L1. The analysis of these loss func tions suggests that, for the training of a CNN-based localisation model, more attention should be paid to small and medium range errors. To this end, we design a piece-wise loss function. The new loss amplifies the impact of errors from the interval (-w, w) by switching from L1 loss to a modified logarithm function. To address the problem of under-representation of samples with large out-of-plane head rotations in the training set, we propose a simple but effective boosting strategy, referred to as pose-based data balancing. In particular, we deal with the data imbalance problem by duplicating the minority training samples and perturbing them by injecting random image rotation, bounding box translation and other data augmentation approaches. Last, the proposed approach is extended to create a two-stage framework for robust facial landmark localisation. The experimental results obtained on AFLW and 300W demonstrate the merits of the Wing loss function, and prove the superiority of the proposed method over the state-of-the-art approaches.
Image-based age estimation aims to predict a persons age from facial images. It is used in a variety of real-world applications. Although end-to-end deep models have achieved impressive results for age estimation on benchmark datasets, their performa nce in-the-wild still leaves much room for improvement due to the challenges caused by large variations in head pose, facial expressions, and occlusions. To address this issue, we propose a simple yet effective method to explicitly incorporate facial semantics into age estimation, so that the model would learn to correctly focus on the most informative facial components from unaligned facial images regardless of head pose and non-rigid deformation. To this end, we design a face parsing-based network to learn semantic information at different scales and a novel face parsing attention module to leverage these semantic features for age estimation. To evaluate our method on in-the-wild data, we also introduce a new challenging large-scale benchmark called IMDB-Clean. This dataset is created by semi-automatically cleaning the noisy IMDB-WIKI dataset using a constrained clustering method. Through comprehensive experiment on IMDB-Clean and other benchmark datasets, under both intra-dataset and cross-dataset evaluation protocols, we show that our method consistently outperforms all existing age estimation methods and achieves a new state-of-the-art performance. To the best of our knowledge, our work presents the first attempt of leveraging face parsing attention to achieve semantic-aware age estimation, which may be inspiring to other high level facial analysis tasks.
Facial attribute analysis in the real world scenario is very challenging mainly because of complex face variations. Existing works of analyzing face attributes are mostly based on the cropped and aligned face images. However, this result in the capab ility of attribute prediction heavily relies on the preprocessing of face detector. To address this problem, we present a novel jointly learned deep architecture for both facial attribute analysis and face detection. Our framework can process the natural images in the wild and our experiments on CelebA and LFWA datasets clearly show that the state-of-the-art performance is obtained.
We propose real-time, six degrees of freedom (6DoF), 3D face pose estimation without face detection or landmark localization. We observe that estimating the 6DoF rigid transformation of a face is a simpler problem than facial landmark detection, ofte n used for 3D face alignment. In addition, 6DoF offers more information than face bounding box labels. We leverage these observations to make multiple contributions: (a) We describe an easily trained, efficient, Faster R-CNN--based model which regresses 6DoF pose for all faces in the photo, without preliminary face detection. (b) We explain how pose is converted and kept consistent between the input photo and arbitrary crops created while training and evaluating our model. (c) Finally, we show how face poses can replace detection bounding box training labels. Tests on AFLW2000-3D and BIWI show that our method runs at real-time and outperforms state of the art (SotA) face pose estimators. Remarkably, our method also surpasses SotA models of comparable complexity on the WIDER FACE detection benchmark, despite not been optimized on bounding box labels.
We address a problem of estimating pose of a persons head from its RGB image. The employment of CNNs for the problem has contributed to significant improvement in accuracy in recent works. However, we show that the following two methods, despite thei r simplicity, can attain further improvement: (i) proper adjustment of the margin of bounding box of a detected face, and (ii) choice of loss functions. We show that the integration of these two methods achieve the new state-of-the-art on standard benchmark datasets for in-the-wild head pose estimation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا