ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment

72   0   0.0 ( 0 )
 نشر من قبل Mingzhen Shao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address a problem of estimating pose of a persons head from its RGB image. The employment of CNNs for the problem has contributed to significant improvement in accuracy in recent works. However, we show that the following two methods, despite their simplicity, can attain further improvement: (i) proper adjustment of the margin of bounding box of a detected face, and (ii) choice of loss functions. We show that the integration of these two methods achieve the new state-of-the-art on standard benchmark datasets for in-the-wild head pose estimation.

قيم البحث

اقرأ أيضاً

We present a framework for robust face detection and landmark localisation of faces in the wild, which has been evaluated as part of `the 2nd Facial Landmark Localisation Competition. The framework has four stages: face detection, bounding box aggreg ation, pose estimation and landmark localisation. To achieve a high detection rate, we use two publicly available CNN-based face detectors and two proprietary detectors. We aggregate the detected face bounding boxes of each input image to reduce false positives and improve face detection accuracy. A cascaded shape regressor, trained using faces with a variety of pose variations, is then employed for pose estimation and image pre-processing. Last, we train the final cascaded shape regressor for fine-grained landmark localisation, using a large number of training samples with limited pose variations. The experimental results obtained on the 300W and Menpo benchmarks demonstrate the superiority of our framework over state-of-the-art methods.
Most existing trackers are based on using a classifier and multi-scale estimation to estimate the target state. Consequently, and as expected, trackers have become more stable while tracking accuracy has stagnated. While trackers adopt a maximum over lap method based on an intersection-over-union (IoU) loss to mitigate this problem, there are defects in the IoU loss itself, that make it impossible to continue to optimize the objective function when a given bounding box is completely contained within/without another bounding box; this makes it very challenging to accurately estimate the target state. Accordingly, in this paper, we address the above-mentioned problem by proposing a novel tracking method based on a distance-IoU (DIoU) loss, such that the proposed tracker consists of target estimation and target classification. The target estimation part is trained to predict the DIoU score between the target ground-truth bounding-box and the estimated bounding-box. The DIoU loss can maintain the advantage provided by the IoU loss while minimizing the distance between the center points of two bounding boxes, thereby making the target estimation more accurate. Moreover, we introduce a classification part that is trained online and optimized with a Conjugate-Gradient-based strategy to guarantee real-time tracking speed. Comprehensive experimental results demonstrate that the proposed method achieves competitive tracking accuracy when compared to state-of-the-art trackers while with a real-time tracking speed.
74 - Tu Zheng , Shuai Zhao , Yang Liu 2021
Bounding box regression is an important component in object detection. Recent work has shown the promising performance by optimizing the Intersection over Union (IoU) as loss. However, IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes, and the model could easily ignore these simple cases. In this paper, we propose Side Overlap (SO) loss by maximizing the side overlap of two bounding boxes, which puts more penalty for low overlapping bounding box cases. Besides, to speed up the convergence, the Corner Distance (CD) is added into the objective function. Combining the Side Overlap and Corner Distance, we get a new regression objective function, Side and Corner Align Loss (SCALoss). The SCALoss is well-correlated with IoU loss, which also benefits the evaluation metric but produces more penalty for low-overlapping cases. It can serve as a comprehensive similarity measure, leading the better localization performance and faster convergence speed. Experiments on COCO and PASCAL VOC benchmarks show that SCALoss can bring consistent improvement and outperform $ell_n$ loss and IoU based loss with popular object detectors such as YOLOV3, SSD, Reppoints, Faster-RCNN.
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep c onvolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors and sub-category detection. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset.
This paper focuses on structured-output learning using deep neural networks for 3D human pose estimation from monocular images. Our network takes an image and 3D pose as inputs and outputs a score value, which is high when the image-pose pair matches and low otherwise. The network structure consists of a convolutional neural network for image feature extraction, followed by two sub-networks for transforming the image features and pose into a joint embedding. The score function is then the dot-product between the image and pose embeddings. The image-pose embedding and score function are jointly trained using a maximum-margin cost function. Our proposed framework can be interpreted as a special form of structured support vector machines where the joint feature space is discriminatively learned using deep neural networks. We test our framework on the Human3.6m dataset and obtain state-of-the-art results compared to other recent methods. Finally, we present visualizations of the image-pose embedding space, demonstrating the network has learned a high-level embedding of body-orientation and pose-configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا