ترغب بنشر مسار تعليمي؟ اضغط هنا

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

367   0   0.0 ( 0 )
 نشر من قبل V\\'itor Albiero
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose real-time, six degrees of freedom (6DoF), 3D face pose estimation without face detection or landmark localization. We observe that estimating the 6DoF rigid transformation of a face is a simpler problem than facial landmark detection, often used for 3D face alignment. In addition, 6DoF offers more information than face bounding box labels. We leverage these observations to make multiple contributions: (a) We describe an easily trained, efficient, Faster R-CNN--based model which regresses 6DoF pose for all faces in the photo, without preliminary face detection. (b) We explain how pose is converted and kept consistent between the input photo and arbitrary crops created while training and evaluating our model. (c) Finally, we show how face poses can replace detection bounding box training labels. Tests on AFLW2000-3D and BIWI show that our method runs at real-time and outperforms state of the art (SotA) face pose estimators. Remarkably, our method also surpasses SotA models of comparable complexity on the WIDER FACE detection benchmark, despite not been optimized on bounding box labels.



قيم البحث

اقرأ أيضاً

While convolutional neural networks (CNNs) have significantly boosted the performance of face related algorithms, maintaining accuracy and efficiency simultaneously in practical use remains challenging. Recent study shows that using a cascade of hour glass modules which consist of a number of bottom-up and top-down convolutional layers can extract facial structural information for face alignment to improve accuracy. However, previous studies have shown that features produced by shallow convolutional layers are highly correspond to edges. These features could be directly used to provide the structural information without addition cost. Motivated by this intuition, we propose an efficient multitask face alignment, face tracking and head pose estimation network (ATPN). Specifically, we introduce a shortcut connection between shallow-layer features and deep-layer features to provide the structural information for face alignment and apply the CoordConv to the last few layers to provide coordinate information. The predicted facial landmarks enable us to generate a cheap heatmap which contains both geometric and appearance information for head pose estimation and it also provides attention clues for face tracking. Moreover, the face tracking task saves us the face detection procedure for each frame, which is significant to boost performance for video-based tasks. The proposed framework is evaluated on four benchmark datasets, WFLW, 300VW, WIDER Face and 300W-LP. The experimental results show that the ATPN achieves improved performance compared to previous state-of-the-art methods while having less number of parameters and FLOPS.
In this paper, we present a deep learning based image feature extraction method designed specifically for face images. To train the feature extraction model, we construct a large scale photo-realistic face image dataset with ground-truth corresponden ce between multi-view face images, which are synthesized from real photographs via an inverse rendering procedure. The deep face feature (DFF) is trained using correspondence between face images rendered from different views. Using the trained DFF model, we can extract a feature vector for each pixel of a face image, which distinguishes different facial regions and is shown to be more effective than general-purpose feature descriptors for face-related tasks such as matching and alignment. Based on the DFF, we develop a robust face alignment method, which iteratively updates landmarks, pose and 3D shape. Extensive experiments demonstrate that our method can achieve state-of-the-art results for face alignment under highly unconstrained face images.
Depth cameras allow to set up reliable solutions for people monitoring and behavior understanding, especially when unstable or poor illumination conditions make unusable common RGB sensors. Therefore, we propose a complete framework for the estimatio n of the head and shoulder pose based on depth images only. A head detection and localization module is also included, in order to develop a complete end-to-end system. The core element of the framework is a Convolutional Neural Network, called POSEidon+, that receives as input three types of images and provides the 3D angles of the pose as output. Moreover, a Face-from-Depth component based on a Deterministic Conditional GAN model is able to hallucinate a face from the corresponding depth image. We empirically demonstrate that this positively impacts the system performances. We test the proposed framework on two public datasets, namely Biwi Kinect Head Pose and ICT-3DHP, and on Pandora, a new challenging dataset mainly inspired by the automotive setup. Experimental results show that our method overcomes several recent state-of-art works based on both intensity and depth input data, running in real-time at more than 30 frames per second.
We present a framework for robust face detection and landmark localisation of faces in the wild, which has been evaluated as part of `the 2nd Facial Landmark Localisation Competition. The framework has four stages: face detection, bounding box aggreg ation, pose estimation and landmark localisation. To achieve a high detection rate, we use two publicly available CNN-based face detectors and two proprietary detectors. We aggregate the detected face bounding boxes of each input image to reduce false positives and improve face detection accuracy. A cascaded shape regressor, trained using faces with a variety of pose variations, is then employed for pose estimation and image pre-processing. Last, we train the final cascaded shape regressor for fine-grained landmark localisation, using a large number of training samples with limited pose variations. The experimental results obtained on the 300W and Menpo benchmarks demonstrate the superiority of our framework over state-of-the-art methods.
Practical face recognition has been studied in the past decades, but still remains an open challenge. Current prevailing approaches have already achieved substantial breakthroughs in recognition accuracy. However, their performance usually drops dram atically if face samples are severely misaligned. To address this problem, we propose a highly efficient misalignment-robust locality-constrained representation (MRLR) algorithm for practical real-time face recognition. Specifically, the locality constraint that activates the most correlated atoms and suppresses the uncorrelated ones, is applied to construct the dictionary for face alignment. Then we simultaneously align the warped face and update the locality-constrained dictionary, eventually obtaining the final alignment. Moreover, we make use of the block structure to accelerate the derived analytical solution. Experimental results on public data sets show that MRLR significantly outperforms several state-of-the-art approaches in terms of efficiency and scalability with even better performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا