ترغب بنشر مسار تعليمي؟ اضغط هنا

CLASH: Accurate Photometric Redshifts with 14 HST bands in Massive Galaxy Cluster Cores

83   0   0.0 ( 0 )
 نشر من قبل Alberto Molino
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present accurate photometric redshifts for galaxies observed by the Cluster Lensing and Supernova survey with Hubble (CLASH). CLASH observed 25 massive galaxy cluster cores with the Hubble Space Telescope in 16 filters spanning 0.2 - 1.7 $mu$m. Photometry in such crowded fields is challenging. Compared to our previously released catalogs, we make several improvements to the photometry, including smaller apertures, ICL subtraction, PSF matching, and empirically measured uncertainties. We further improve the Bayesian Photometric Redshift (BPZ) estimates by adding a redder elliptical template and by inflating the photometric uncertainties of the brightest galaxies. The resulting photometric redshift accuracies are dz/(1+z) $sim$ 0.8%, 1.0%, and 2.0% for galaxies with I-band F814W AB magnitudes $<$ 18, 20, and 23, respectively. These results are consistent with our expectations. They improve on our previously reported accuracies by a factor of 4 at the bright end and a factor of 2 at the faint end. Our new catalog includes 1257 spectroscopic redshifts, including 382 confirmed cluster members. We also provide stellar mass estimates. Finally, we include lensing magnification estimates of background galaxies based on our public lens models. Our new catalog of all 25 CLASH clusters is available via MAST. The analysis techniques developed here will be useful in other surveys of crowded fields, including the Frontier Fields and surveys carried out with J-PAS and JWST.



قيم البحث

اقرأ أيضاً

428 - S. Jouvel , O. Host , O. Lahav 2013
The Cluster Lensing And Supernovae survey with Hubble (CLASH) is an Hubble Space Telescope (HST) Multi-Cycle Treasury program observing 25 massive galaxy clusters. CLASH observations are carried out in 16 bands from UV to NIR to derive accurate and r eliable estimates of photometric redshifts. We present the CLASH photometric redshifts and study the photometric redshift accuracy of the arcs in more detail for the case of MACS1206.2-0847. We use the publicly available Le Phare and BPZ photometric redshift codes on 17 CLASH galaxy clusters. Using Le Phare code for objects with StoN>=10, we reach a precision of 3%(1+z) for the strong lensing arcs, which is reduced to 2.4%(1+z) after removing outliers. For galaxies in the cluster field the corresponding values are 4%(1+z) and 3%(1+z). Using mock galaxy catalogues, we show that 3%(1+z) precision is what one would expect from the CLASH photometry when taking into account extinction from dust, emission lines and the finite range of SEDs included in the photo-z template library. We study photo-z results for different aperture photometry and find that the SExtractor isophotal photometry works best. Le Phare and BPZ give similar photo-z results for the strong lensing arcs as well as galaxies of the cluster field. Results are improved when optimizing the photometric aperture shape showing an optimal aperture size around 1 radius giving results which are equivalent to isophotal photometry. Tailored photometry of the arcs improve the photo-z results.
Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have relia ble and tested methods that allow us to properly identify these systems and estimate their total masses and other properties. Aims. In view of the forthcoming Physics of the Accelerating Universe Survey (PAUS) we propose and evaluate the performance of an identification algorithm of projected close isolated galaxy pairs. We expect that the photometric selected systems can adequately reproduce the observational properties and the inferred lensing mass - luminosity relation of a pair of truly bound galaxies that are hosted by the same dark matter halo. Methods. We develop an identification algorithm that considers the projected distance between the galaxies, the projected velocity difference and an isolation criteria in order to restrict the sample to isolated systems. We apply our identification algorithm using a mock galaxy catalog that mimics the features of PAUS. To evaluate the feasibility of our pair finder, we compare the identified photometric samples with a test sample that considers that both members are included in the same halo. Also, taking advantage of the lensing properties provided by the mock catalog, we apply a weak lensing analysis to determine the mass of the selected systems. Results. Photometric selected samples tend to show high purity values, but tend to misidentify truly bounded pairs as the photometric redshift errors increase. Nevertheless, overall properties such as the luminosity and mass distributions are successfully reproduced. We also accurately reproduce the lensing mass - luminosity relation as expected for galaxy pairs located in the same halo.
We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and catastrophic outlier fraction of photometric r edshifts when galaxy size, ellipticity, S{e}rsic index and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full $ugriz$ photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of $grz$ photometry and morphological parameters almost fully recovers the metrics of $5$-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution $N(z)$ of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 $ugriz$ bands when available. Our redshifts yield a 68th percentile error of $0.058(1+z)$, and a catastrophic outlier fraction of $5.2$ per cent. We further include a deep extension trained on morphology and single $i$-band CS82 photometry.
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ~900 square arcminutes in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging datasets in addition to the HST data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3um to 8um. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point spread function in each observation into account. A total of 147 distinct imaging datasets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST website.
Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and AGN feedback, are dependent upon local dynamical timescales. However, accurately mapping the mass distribution within individual clust ers is challenging, particularly towards cluster centres where the total mass budget has substantial radially-dependent contributions from the stellar, gas, and dark matter components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H-alpha emission in cool core clusters. Amongst this small sample we find no support for the existence of a central entropy floor, with the entropy profiles following a power-law profile down to our resolution limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا