ﻻ يوجد ملخص باللغة العربية
We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and catastrophic outlier fraction of photometric redshifts when galaxy size, ellipticity, S{e}rsic index and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full $ugriz$ photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of $grz$ photometry and morphological parameters almost fully recovers the metrics of $5$-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution $N(z)$ of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 $ugriz$ bands when available. Our redshifts yield a 68th percentile error of $0.058(1+z)$, and a catastrophic outlier fraction of $5.2$ per cent. We further include a deep extension trained on morphology and single $i$-band CS82 photometry.
Machine learning (ML) is a standard approach for estimating the redshifts of galaxies when only photometric information is available. ML photo-z solutions have traditionally ignored the morphological information available in galaxy images or partly i
Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have relia
We present a robust method to estimate the redshift of galaxies using Pan-STARRS1 photometric data. Our method is an adaptation of the one proposed by Beck et al. (2016) for the SDSS Data Release 12. It uses a training set of 2313724 galaxies for whi
Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the Galaxy Stellar Mass Function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly
We present a bright galaxy sample with accurate and precise photometric redshifts (photo-zs), selected using $ugriZYJHK_mathrm{s}$ photometry from the Kilo-Degree Survey (KiDS) Data Release 4 (DR4). The highly pure and complete dataset is flux-limite