ﻻ يوجد ملخص باللغة العربية
The standard Halo Occupation Distribution (HOD) models were originally developed based on results from semi-analytic and hydrodynamical galaxy formation models. Those models have since progressed, in particular to include AGN feedback to match the galaxy luminosity function in a universe with the observed baryon fraction. AGN feedback affects the relationship between galaxy stellar mass and luminosity, in particular making the relationship non-monotonic. For matched number density samples, galaxies in luminosity-threshold samples occupy a different range of halo masses from those in stellar-mass-threshold samples. We find that the shapes of the HODs of luminosity-threshold samples are slightly more complicated in semi-analytic galaxy formation models that include AGN feedback than are assumed by standard HOD models. We also find that subhalo abundance matching (SHAM) does not preserve these non-standard shapes. We show that catalogues created using SHAM and the semi-analytic model Galform that have the same large-scale 2-point clustering by construction have different void probability functions (VPFs) in both real and redshift space. We find that these differences arise from the different HOD shapes, as opposed to assembly bias, which indicates that the VPF could be used to test the suitability of an HOD model with real data.
Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by
Active galactic nucleus (AGN) feedback, driven by radiation pressure on dust, is an important mechanism for efficiently coupling the accreting black hole to the surrounding environment. Recent observations confirm that X-ray selected AGN samples resp
We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these dist
We examine the evolution of assembly bias using a semi-analytical model of galaxy formation implemented in the Millennium-WMAP7 N-body simulation. We consider fixed number density galaxy samples ranked by stellar mass or star formation rate. We inves
The mass, accretion rate and formation time of dark matter haloes near proto-filaments (identified as saddle points of the potential) are analytically predicted using a conditional version of the excursion set approach in its so-called upcrossing app