ﻻ يوجد ملخص باللغة العربية
We examine the evolution of assembly bias using a semi-analytical model of galaxy formation implemented in the Millennium-WMAP7 N-body simulation. We consider fixed number density galaxy samples ranked by stellar mass or star formation rate. We investigate how the clustering of haloes and their galaxy content depend on halo formation time and concentration, and how these relationships evolve with redshift. At $z=0$ the dependences of halo clustering on halo concentration and formation time are similar. However, at higher redshift, halo assembly bias weakens for haloes selected by age, and reverses and increases for haloes selected by concentration. The variation of the halo occupation with concentration and formation time is also similar at $z=0$ and changes at higher redshifts. In this case, the occupancy variation with halo age stays mostly constant with redshift but decreases for concentration. Finally, we look at the evolution of assembly bias reflected in the galaxy distribution by examining the galaxy correlation functions relative to those of shuffled galaxy samples which remove the occupancy variation. This correlation functions ratio monotonically decreases with larger redshift and for lower number density samples, going below unity in some cases, leading to reduced galaxy clustering. While the halo occupation functions themselves vary, the assembly bias trends are similar whether selecting galaxies by stellar mass or star formation rate. Our results provide further insight into the origin and evolution of assembly bias. Our extensive occupation function measurements and fits are publicly available and can be used to create realistic mock catalogues.
We analyze the spectra of 300,000 luminous red galaxies (LRGs) with stellar masses $M_* gtrsim 10^{11} M_{odot}$ from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). By studying their star-formation histories, we find two main evolutiona
We use the {sc Illustris TNG300} magneto-hydrodynamic simulation, the {sc SAGE} semi-analytical model, and the subhalo abundance matching technique (SHAM) to examine the diversity in predictions for galaxy assembly bias (i.e. the difference in the la
Understanding the galaxy-halo connection is fundamental for contemporary models of galaxy clustering. The extent to which the haloes assembly history and environment impact galaxy clustering (a.k.a. galaxy assembly bias; GAB), remains a complex and c
Using dark matter haloes identified in a large $N$-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass int
We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these dist