ﻻ يوجد ملخص باللغة العربية
Active galactic nucleus (AGN) feedback, driven by radiation pressure on dust, is an important mechanism for efficiently coupling the accreting black hole to the surrounding environment. Recent observations confirm that X-ray selected AGN samples respect the effective Eddington limit for dusty gas in the plane defined by the observed column density versus the Eddington ratio, the so-called $N_{rm H} - lambda$ plane. A `forbidden region occurs in this plane, where obscuring clouds cannot be long-lived, due to the action of radiation pressure on dust. Here we compute the effective Eddington limit by explicitly taking into account the trapping of reprocessed radiation (which has been neglected in previous works), and investigate its impact on the $N_{rm H} - lambda$ plane. We show that the inclusion of radiation trapping leads to an enhanced forbidden region, such that even Compton-thick material can potentially be disrupted by sub-Eddington luminosities. We compare our model results to the most complete sample of local AGNs with measured X-ray properties, and find good agreement. Considering the anisotropic emission from the accretion disc, we also expect the development of dusty outflows along the polar axis, which may naturally account for the polar dust emission recently detected in several AGNs from mid-infrared observations. Radiative feedback thus appears to be the key mechanism regulating the obscuration properties of AGNs, and we discuss its physical implications in the context of co-evolution scenarios.
AGN driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate o
Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and obs
We have defined a sample of 63 AGN with strong forbidden high-ionisation line (FHIL) emission. These lines, with ionisation potentials >~ 100eV, respond to a portion of the spectrum that is often difficult to observe directly, thereby providing const
Radiation pressure on dust is thought to play a crucial role in the formation process of massive stars by acting against gravitational collapse onto the central protostar. However, dust properties in dense regions irradiated by the intense radiation
Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the three-dimensional turbulent `weather in a high-resolution E