ﻻ يوجد ملخص باللغة العربية
The investigation of optoelectronic devices based on two-dimensional materials and their heterostructures is a very active area of investigation with both fundamental and applied aspects involved. We present a description of a home-built scanning photocurrent microscope that we have designed and developed to perform electronic transport and optical measurements of two-dimensional materials based devices. The complete system is rather inexpensive (<10000 EUR) and it can be easily replicated in any laboratory. To illustrate the setup we measure current-voltage characteristics, in dark and under global illumination, of an ultra-thin PN junction formed by the stacking of an n-doped few-layer MoS2 flake onto a p-type MoS2 flake. We then acquire scanning photocurrent maps and by mapping the short circuit current generated in the device under local illumination we find that at zero bias the photocurrent is generated mostly in the region of overlap between the n-type and p-type flakes.
Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques to study 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is
Two-dimensional (2D) materials exhibit a number of improved mechanical, optical, electronic properties compared to their bulk counterparts. The absence of dangling bonds in the cleaved surfaces of these materials allows combining different 2D materia
We review recent progress on spins and magnetism in 2D materials including graphene, transition metal dichalcogenides, and 2D magnets. We also discuss challenges and prospects for the future of spintronics with 2D van der Waals heterostructures.
The high mechanical strength and excellent flexibility of 2D materials such as graphene are some of their most important properties [1]. Good flexibility is key for exploiting 2D materials in many emerging technologies, such as wearable electronics,
Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS$_2$ and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximatio