ﻻ يوجد ملخص باللغة العربية
Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS$_2$ and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an {it ab initio} based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS$_2$ are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.
An in-depth analysis of valley physics in 2D materials like transition metal dichalcogenides requires the measurement of many material properties as a function of Fermi level position within the electronic band structure. This is normally done by cha
We review recent progress on spins and magnetism in 2D materials including graphene, transition metal dichalcogenides, and 2D magnets. We also discuss challenges and prospects for the future of spintronics with 2D van der Waals heterostructures.
The high mechanical strength and excellent flexibility of 2D materials such as graphene are some of their most important properties [1]. Good flexibility is key for exploiting 2D materials in many emerging technologies, such as wearable electronics,
In hyperbolic 2D materials, energy is channeled to their deep subwavelength polaritonic modes via four narrow beams. Here we consider the launching of surface polaritons in the hyperbolic 2D materials and demonstrate that efficient uni-directional ex
The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple