ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmonic physics of 2D crystalline materials

136   0   0.0 ( 0 )
 نشر من قبل Reza Asgari
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS$_2$ and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an {it ab initio} based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS$_2$ are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.



قيم البحث

اقرأ أيضاً

An in-depth analysis of valley physics in 2D materials like transition metal dichalcogenides requires the measurement of many material properties as a function of Fermi level position within the electronic band structure. This is normally done by cha nging the charge carrier density of the 2D material via the gate electric field effect. Here, we show that a comparison of gate-dependent measurements, which were acquired under different measurement conditions can encounter significant problems due to the temporal evolution of the charging of trap states inside the dielectric layer or at its interfaces. The impact of, e.g., the gate sweep direction and the sweep rate on the overall gate dependence gets especially prominent in optical measurements due to photo-excitation of donor and acceptor states. Under such conditions the same nominal gate-voltage may lead to different gate-induced charge carrier densities and, hence, Fermi level positions. We demonstrate that a current flow from or even through the dielectric layer via leakage currents can significantly diminish the gate tunability in optical measurements of 2D materials.
205 - Roland K. Kawakami 2019
We review recent progress on spins and magnetism in 2D materials including graphene, transition metal dichalcogenides, and 2D magnets. We also discuss challenges and prospects for the future of spintronics with 2D van der Waals heterostructures.
186 - A. P. Rooney , Z. Li , W. Zhao 2018
The high mechanical strength and excellent flexibility of 2D materials such as graphene are some of their most important properties [1]. Good flexibility is key for exploiting 2D materials in many emerging technologies, such as wearable electronics, bioelectronics, protective coatings and composites [1] and recently bending has been suggested as a route to tune electronic transport behaviour [2]. For virtually all crystalline materials macroscopic deformation is accommodated by the movement of dislocations and through the formation of twinning defects [3]; it is the geometry of the resulting microstructure that largely determines the mechanical and electronic properties. Despite this, the atomic microstructure of 2D materials after mechanical deformation has not been widely investigated: only by understanding these deformed microstructures can the resulting properties be accurately predicted and controlled. In this paper we describe the different structural features that can form as a result of bending in van der Waals (vdW) crystals of 2D materials. We show that twin boundaries, an important class of crystal defect, are delocalised by several nm and not atomically sharp as has been assumed for over half a century [4]. In addition, we demonstrate that different classes of microstructure are present in the deformed material and can be predicted from just the atomic structure, bend angle, and flake thickness. We anticipate that this new knowledge of the deformation structure for 2D materials will provide foundations for tailoring transport behaviour[2], mechanical properties, liquid-phase [5,6] and scotch-tape exfoliation [7,8], and crystal growth.
In hyperbolic 2D materials, energy is channeled to their deep subwavelength polaritonic modes via four narrow beams. Here we consider the launching of surface polaritons in the hyperbolic 2D materials and demonstrate that efficient uni-directional ex citation is possible with an elliptically polarized electric dipole, with the optimal choice of dipole ellipticity depending on the materials optical constants. The selection rules afforded by the choice of dipole polarization allow turning off up to two beams, and even three if the dipole is placed close to an edge. This makes the dipole a directionally switchable beacon for the launching of sub-difractional polaritonic beams, a potential logical gate. We develop an analytical approximation of the excitation process which describes the results of the numerical simulations well and affords a simple physical interpretation.
The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Flaws created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا