ترغب بنشر مسار تعليمي؟ اضغط هنا

The Northern Arc of $epsilon$ Eridanis Debris Ring as Seen by ALMA

59   0   0.0 ( 0 )
 نشر من قبل Mark Booth
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first ALMA observations of the closest known extrasolar debris disc. This disc orbits the star $epsilon$ Eridani, a K-type star just 3.2pc away. Due to the proximity of the star, the entire disc cannot fit within the ALMA field of view. Therefore, the observations have been centred 18 North of the star, providing us with a clear detection of the northern arc of the ring, at a wavelength of 1.3mm. The observed disc emission is found to be narrow with a width of just 11-13AU. The fractional disc width we find is comparable to that of the Solar Systems Kuiper Belt and makes this one of the narrowest debris discs known. If the inner and outer edges are due to resonances with a planet then this planet likely has a semi-major axis of 48AU. We find tentative evidence for clumps in the ring, although there is a strong chance that at least one is a background galaxy. We confirm, at much higher significance, the previous detection of an unresolved emission at the star that is above the level of the photosphere and attribute this excess to stellar chromospheric emission.



قيم البحث

اقرأ أيضاً

The young A0V star HR 4796A is host to a bright and narrow ring of dust, thought to originate in collisions between planetesimals within a belt analogous to the Solar Systems Edgeworth-Kuiper belt. Here we present high spatial resolution 880$mu$m con tinuum images from the Atacama Large Millimeter Array. The 80au radius dust ring is resolved radially with a characteristic width of 10au, consistent with the narrow profile seen in scattered light. Our modelling consistently finds that the disk is also vertically resolved with a similar extent. However, this extent is less than the beam size, and a disk that is dynamically very cold (i.e. vertically thin) provides a better theoretical explanation for the narrow scattered light profile, so we remain cautious about this conclusion. We do not detect $^{12}$CO J=3-2 emission, concluding that unless the disk is dynamically cold the CO+CO$_2$ ice content of the planetesimals is of order a few percent or less. We consider the range of semi-major axes and masses of an interior planet supposed to cause the rings eccentricity, finding that such a planet should be more massive than Neptune and orbit beyond 40au. Independent of our ALMA observations, we note a conflict between mid-IR pericenter-glow and scattered light imaging interpretations, concluding that models where the spatial dust density and grain size vary around the ring should be explored.
We present the first linear-polarization mosaicked observations performed by the Atacama Large Millimeter/submillimeter Array (ALMA). We mapped the Orion-KLeinmann-Low (Orion-KL) nebula using super-sampled mosaics at 3.1 and 1.3 mm as part of the ALM A Extension and Optimization of Capabilities (EOC) program. We derive the magnetic field morphology in the plane of the sky by assuming that dust grains are aligned with respect to the ambient magnetic field. At the center of the nebula, we find a quasi-radial magnetic field pattern that is aligned with the explosive CO outflow up to a radius of approximately 12 arc-seconds (~ 5000 au), beyond which the pattern smoothly transitions into a quasi-hourglass shape resembling the morphology seen in larger-scale observations by the James-Clerk-Maxwell Telescope (JCMT). We estimate an average magnetic field strength $langle Brangle = 9.4$ mG and a total magnetic energy of 2 x 10^45 ergs, which is three orders of magnitude less than the energy in the explosive CO outflow. We conclude that the field has been overwhelmed by the outflow and that a shock is propagating from the center of the nebula, where the shock front is seen in the magnetic field lines at a distance of ~ 5000 au from the explosion center.
We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 $mu$Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt a MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of $136.3pm0.9$ AU and width of $13.5pm1.8$ AU. We determine a best-fit eccentricity of $0.12pm0.01$. Assuming a size distribution power law index of $q=3.46pm 0.09$, we constrain the dust absorptivity power law index $beta$ to be $0.9<beta<1.5$. The geometry of the disk is robustly constrained with inclination $65.!!^circ6pm0.!!^circ3$, position angle $337.!!^circ9pm0.!!^circ3$, and argument of periastron $22.!!^circ5pm4.!!^circ3$. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with HST, SCUBA, and ALMA. However, we cannot rule out structures $leq10$ AU in size or which only affect smaller grains. The central star is clearly detected with a flux density of $0.75pm0.02$ mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.
174 - L. Matr`a , O. Panic , M. C. Wyatt 2014
In recent years, gas has been observed in an increasing number of debris discs, though its nature remains to be determined. Here, we analyse CO molecular excitation in optically thin debris discs, and search ALMA Cycle-0 data for CO J=3-2 emission in the Fomalhaut ring. No significant line emission is observed; we set a 3-$sigma$ upper limit on the integrated line flux of 0.16 Jy km s$^{-1}$. We show a significant dependency of the CO excitation on the density of collisional partners $n$, on the gas kinetic temperature $T_k$ and on the ambient radiation field $J$, suggesting that assumptions widely used for protoplanetary discs (e.g. LTE) do not necessarily apply to their low density debris counterparts. When applied to the Fomalhaut ring, we consider a primordial origin scenario where H$_2$ dominates collisional excitation of CO, and a secondary origin scenario dominated by e$^-$ and H$_2$O. In either scenario, we obtain a strict upper limit on the CO mass of 4.9 $times$ 10$^{-4}$ M$_{oplus}$. This arises in the non-LTE regime, where the excitation of the molecule is determined solely by the well-known radiation field. In the secondary scenario, assuming any CO present to be in steady state allows us to set an upper limit of $sim$55% on the CO/H$_2$O ice ratio in the parent planetesimals. This could drop to $sim$3% if LTE applies, covering the range observed in Solar System comets (0.4-30%). Finally, in light of our analysis, we present prospects for CO detection and characterisation in debris discs with ALMA.
The formation of planets occurs within protoplanetary disks surrounding young stars, resulting in perturbation of the gas and dust surface densities. Here, we report the first evidence of spatially resolved gas surface density ($Sigma_{g}$) perturbat ion towards the AS~209 protoplanetary disk from the optically thin C$^{18}$O ($J=2-1$) emission. The observations were carried out at 1.3~mm with ALMA at a spatial resolution of about 0.3$arcsec$ $times$ 0.2$arcsec$ (corresponding to $sim$ 38 $times$ 25 au). The C$^{18}$O emission shows a compact ($le$60~au), centrally peaked emission and an outer ring peaking at 140~au, consistent with that observed in the continuum emission and, its azimuthally averaged radial intensity profile presents a deficit that is spatially coincident with the previously reported dust map. This deficit can only be reproduced with our physico-thermochemical disk model by lowering $Sigma_{gas}$ by nearly an order of magnitude in the dust gaps. Another salient result is that contrary to C$^{18}$O, the DCO$^{+}$ ($J=3-2$) emission peaks between the two dust gaps. We infer that the best scenario to explain our observations (C$^{18}$O deficit and DCO$^{+}$ enhancement) is a gas perturbation due to forming-planet(s), that is commensurate with previous continuum observations of the source along with hydrodynamical simulations. Our findings confirm that the previously observed dust gaps are very likely due to perturbation of the gas surface density that is induced by a planet of at least 0.2~M$rm_{Jupiter}$ in formation. Finally, our observations also show the potential of using CO isotopologues to probe the presence of saturn mass planet(s).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا