ترغب بنشر مسار تعليمي؟ اضغط هنا

A Complete ALMA Map of the Fomalhaut Debris Disk

107   0   0.0 ( 0 )
 نشر من قبل Meredith MacGregor
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 $mu$Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt a MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of $136.3pm0.9$ AU and width of $13.5pm1.8$ AU. We determine a best-fit eccentricity of $0.12pm0.01$. Assuming a size distribution power law index of $q=3.46pm 0.09$, we constrain the dust absorptivity power law index $beta$ to be $0.9<beta<1.5$. The geometry of the disk is robustly constrained with inclination $65.!!^circ6pm0.!!^circ3$, position angle $337.!!^circ9pm0.!!^circ3$, and argument of periastron $22.!!^circ5pm4.!!^circ3$. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with HST, SCUBA, and ALMA. However, we cannot rule out structures $leq10$ AU in size or which only affect smaller grains. The central star is clearly detected with a flux density of $0.75pm0.02$ mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.

قيم البحث

اقرأ أيضاً

We present ALMA Band 6 observations (1.3 mm/233 GHz) of Fomalhaut and its debris disc. The observations achieve a sensitivity of 17 $mu$Jy and a resolution of 0.28 arcsec (2.1 au at a distance of 7.66 pc), which are the highest resolution observation s to date of the millimetre grains in Fomalhauts main debris ring. The ring is tightly constrained to $139^{+2}_{-3}$ au with a FWHM of $13pm3$ au, following a Gaussian profile. The millimetre spectral index is constrained to $alpha_{mm} = -2.62pm0.12$. We explore fitting debris disc models in the image plane, as well as fitting models using visibility data directly. The results are compared and the potential advantages/disadvantages of each approach are discussed. The detected central emission is indistinguishable from a point source, with a most probable flux of $0.90pm 0.12$ mJy (including calibration uncertainties). This implies that any inner debris structure, as was inferred from far-Infrared observations, must contribute little to the total central emission. Moreover, the stellar flux is less than 70% of that predicted by extrapolating a black body from the constrained stellar photosphere temperature. This result emphasizes that unresolved inner debris components cannot be fully characterized until the behaviour of the host stars intrinsic stellar emission at millimetre wavelengths is properly understood.
[Abridged] Debris disks are extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU as well as evidence of a warm dust component, which is suspected of being a bright analog to the solar syst ems zodiacal dust. Interferometric observations obtained with the VLTI and the KIN have identified near- and mid-infrared excesses attributed to hot and warm exozodiacal dust in the inner few AU of the star. We performed parametric modeling of the exozodiacal disk using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared measurements. A detailed treatment of sublimation temperatures was introduced to explore the hot population at the sublimation rim. We then used an analytical approach to successively testing several source mechanisms. A good fit to the data is found by two distinct dust populations: (1) very small, hence unbound, hot dust grains confined in a narrow region at the sublimation rim of carbonaceous material; (2) bound grains at 2 AU that are protected from sublimation and have a higher mass despite their fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of aggregates that originate from the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so the observed amount of dust must be triggered by intense dynamical activity. Fomalhaut may be representative of exozodis that are currently being surveyed worldwide. We propose a framework for reconciling the hot exozodi phenomenon with theoretical constraints: the hot component of Fomalhaut is likely the tip of the iceberg since it could originate from a warm counterpart residing near the ice line.
Fomalhaut C (LP 876-10) is a low mass M4V star in the intriguing Fomalhaut triple system and, like Fomalhaut A, possesses a debris disc. It is one of very few nearby M-dwarfs known to host a debris disc and of these has by far the lowest stellar mass . We present new resolved observations of the debris disc around Fomalhaut C with the Atacama Large Millimetre Array which allow us to model its properties and investigate the systems unique history. The ring has a radius of 26 au and a narrow full width at half maximum of at most 4.2 au. We find a 3$sigma$ upper limit on the eccentricity of 0.14, neither confirming nor ruling out previous dynamic interactions with Fomalhaut A that could have affected Fomalhaut Cs disc. We detect no $^{12}$CO J=3-2 emission in the system and do not detect the disc in scattered light with HST/STIS or VLT/SPHERE. We find the original Herschel detection to be consistent with our ALMA models radial size. We place the disc in the context of the wider debris disc population and find that its radius is as expected from previous disc radius-host luminosity trends. Higher signal-to-noise observations of the system would be required to further constrain the disc properties and provide further insight to the history of the Fomalhaut triple system as a whole.
Debris disks are tenuous, dusty belts surrounding main sequence stars generated by collisions between planetesimals. HD 206893 is one of only two stars known to host a directly imaged brown dwarf orbiting interior to its debris ring, in this case at a projected separation of 10.4 au. Here we resolve structure in the debris disk around HD 206893 at an angular resolution of 0.6 (24 au) and wavelength of 1.3 mm with the Atacama Large Millimeter/submillimeter Array (ALMA). We observe a broad disk extending from a radius of <51 au to 194^{+13}_{-2} au. We model the disk with a continuous, gapped, and double power-law model of the surface density profile, and find strong evidence for a local minimum in the surface density distribution near a radius of 70 au, consistent with a gap in the disk with an inner radius of 63^{+8}_{-16} au and width 31^{+11}_{-7} au. Gapped structure has been observed in four other debris disks -- essentially every other radially resolved debris disk observed with sufficient angular resolution and sensitivity with ALMA -- and could be suggestive of the presence of an additional planetary-mass companion.
We present 1.3 millimeter ALMA Cycle 0 observations of the edge-on debris disk around the nearby, ~10 Myr-old, M-type star AU Mic. These observations obtain 0.6 arcsec (6 AU) resolution and reveal two distinct emission components: (1) the previously known dust belt that extends to a radius of 40 AU, and (2) a newly recognized central peak that remains unresolved. The cold dust belt of mass about 1 lunar mass is resolved in the radial direction with a rising emission profile that peaks sharply at the location of the outer edge of the birth ring of planetesimals hypothesized to explain the midplane scattered light gradients. No significant asymmetries are discerned in the structure or position of this dust belt. The central peak identified in the ALMA image is ~6 times brighter than the stellar photosphere, which indicates an additional emission process in the inner regions of the system. Emission from a stellar corona or activity may contribute, but the observations show no signs of temporal variations characteristic of radio-wave flares. We suggest that this central component may be dominated by dust emission from an inner planetesimal belt of mass about 0.01 lunar mass, consistent with a lack of emission shortward of 25 microns and a location <3 AU from the star. Future millimeter observations can test this assertion, as an inner dust belt should be readily separated from the central star at higher angular resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا