ترغب بنشر مسار تعليمي؟ اضغط هنا

Equitable partition of planar graphs

75   0   0.0 ( 0 )
 نشر من قبل Sang-Il Oum
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An equitable $k$-partition of a graph $G$ is a collection of induced subgraphs $(G[V_1],G[V_2],ldots,G[V_k])$ of $G$ such that $(V_1,V_2,ldots,V_k)$ is a partition of $V(G)$ and $-1le |V_i|-|V_j|le 1$ for all $1le i<jle k$. We prove that every planar graph admits an equitable $2$-partition into $3$-degenerate graphs, an equitable $3$-partition into $2$-degenerate graphs, and an equitable $3$-partition into two forests and one graph.



قيم البحث

اقرأ أيضاً

215 - Bor-Liang Chen 2009
We confirm the equitable $Delta$-coloring conjecture for interval graphs and establish the monotonicity of equitable colorability for them. We further obtain results on equitable colorability about square (or Cartesian) and cross (or direct) products of graphs.
If the vertices of a graph $G$ are colored with $k$ colors such that no adjacent vertices receive the same color and the sizes of any two color classes differ by at most one, then $G$ is said to be equitably $k$-colorable. Let $|G|$ denote the number of vertices of $G$ and $Delta=Delta(G)$ the maximum degree of a vertex in $G$. We prove that a graph $G$ of order at least 6 is equitably $Delta$-colorable if $G$ satisfies $(|G|+1)/3 leq Delta < |G|/2$ and none of its components is a $K_{Delta +1}$.
In this paper, we study the achromatic and the pseudoachromatic numbers of planar and outerplanar graphs as well as planar graphs of girth 4 and graphs embedded on a surface. We give asymptotically tight results and lower bounds for maximal embedded graphs.
In this article we associate a combinatorial differential graded algebra to a cubic planar graph G. This algebra is defined combinatorially by counting binary sequences, which we introduce, and several explicit computations are provided. In addition, in the appendix by K. Sackel the F(q)-rational points of its graded augmentation variety are shown to coincide with (q+1)-colorings of the dual graph.
The textit{$k$-weak-dynamic number} of a graph $G$ is the smallest number of colors we need to color the vertices of $G$ in such a way that each vertex $v$ of degree $d(v)$ sees at least $rm{min}{k,d(v)}$ colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا