ﻻ يوجد ملخص باللغة العربية
The reduction of the emph{K2}s Campaign 9 (K2C9) microlensing data is challenging mostly because of the very crowded field and the unstable pointing of the spacecraft. In this work, we present the first method that can extract microlensing signals from this K2C9 data product. The raw light curves and the astrometric solutions are first derived, using the techniques from Soares-Furtado et al. and Huang et al. for emph{K2} dense field photometry. We then minimize and remove the systematic effect by performing simultaneous modeling with the microlensing signal. We also derive precise $(K_p-I)$ vs. $(V-I)$ color-color relations that can predict the microlensing source flux in the emph{Kepler} bandpass. By implementing the color-color relation in the light curve modeling, we show that the microlensing parameters can be better constrained. In the end, we use two example microlensing events, OGLE-2016-BLG-0980 and OGLE-2016-BLG-0940, to test our method.
In its Campaign 9, K2 observed dense regions toward the Galactic bulge in order to constrain the microlensing parallaxes and probe for free-floating planets. Photometric reduction of the emph{K2} bulge data poses a significant challenge due to a comb
We present the first short-duration candidate microlensing events from the Kepler K2 mission. From late April to early July 2016, Campaign 9 of K2 obtained high temporal cadence observations over a 3.7 square degree region of the Galactic bulge. Its
We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecrafts K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coude spectrograph on the McDona
Kepler mission is a powerful tool in the study the different types of astrophysical objects or events in the distant Universe. However, the spacecraft gives also the opportunity to study Solar System objects passing in the telescope field of view. Th
Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in forward-facing mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry