ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting Microlensing Signals from K2 Campaign 9

75   0   0.0 ( 0 )
 نشر من قبل Wei Zhu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The reduction of the emph{K2}s Campaign 9 (K2C9) microlensing data is challenging mostly because of the very crowded field and the unstable pointing of the spacecraft. In this work, we present the first method that can extract microlensing signals from this K2C9 data product. The raw light curves and the astrometric solutions are first derived, using the techniques from Soares-Furtado et al. and Huang et al. for emph{K2} dense field photometry. We then minimize and remove the systematic effect by performing simultaneous modeling with the microlensing signal. We also derive precise $(K_p-I)$ vs. $(V-I)$ color-color relations that can predict the microlensing source flux in the emph{Kepler} bandpass. By implementing the color-color relation in the light curve modeling, we show that the microlensing parameters can be better constrained. In the end, we use two example microlensing events, OGLE-2016-BLG-0980 and OGLE-2016-BLG-0940, to test our method.

قيم البحث

اقرأ أيضاً

In its Campaign 9, K2 observed dense regions toward the Galactic bulge in order to constrain the microlensing parallaxes and probe for free-floating planets. Photometric reduction of the emph{K2} bulge data poses a significant challenge due to a comb ination of the very high stellar density, large pixels of the Kepler camera, and the pointing drift of the spacecraft. Here we present a new method to extract K2 photometry in dense stellar regions. We extended the Causal Pixel Model developed for less-crowded fields, first by using the pixel response function together with accurate astrometric grids, second by combining signals from a few pixels, and third by simultaneously fitting for an astrophysical model. We tested the method on two microlensing events and a long-period eclipsing binary. The extracted K2 photometry is an order of magnitude more precise than the photometry from other method.
We present the first short-duration candidate microlensing events from the Kepler K2 mission. From late April to early July 2016, Campaign 9 of K2 obtained high temporal cadence observations over a 3.7 square degree region of the Galactic bulge. Its primary objectives were to look for evidence of a free-floating planet (FFP) population using microlensing, and demonstrate the feasibility of space-based planetary microlensing surveys. Though Kepler K2 is far from optimal for microlensing, the recently developed MCPM photometric pipeline enables us to identify and model microlensing events. We describe our blind event-selection pipeline in detail and use it to recover 22 short-duration events with effective timescales of less than 10 days previously announced by the OGLE and KMTNet ground-based surveys. We also announce five new candidate events. One of these is a caustic-crossing binary event, consistent with a bound planet and modelled as such in a companion study. The other four have very short durations (effective timescales less than 0.1 days) typical of an Earth-mass FFP population. Whilst Kepler was not designed for crowded-field photometry, the K2C9 dataset clearly demonstrates the feasibility of conducting blind space-based microlensing surveys towards the Galactic bulge.
We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecrafts K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coude spectrograph on the McDona ld Observatory 2.7 m telescope. K2-29 b (EPIC 211089792 b) transits a K1V star with a period of $3.2589263pm0.0000015$ days; its orbit is slightly eccentric ($e=0.084_{-0.023}^{+0.032}$). It has a radius of $R_P=1.000_{-0.067}^{+0.071}$ $R_J$ and a mass of $M_P=0.613_{-0.026}^{+0.027}$ $M_J$. Its host star exhibits significant rotational variability, and we measure a rotation period of $P_{mathrm{rot}}=10.777 pm 0.031$ days. K2-30 b (EPIC 210957318 b) transits a G6V star with a period of $4.098503pm0.000011$ days. It has a radius of $R_P=1.039_{-0.051}^{+0.050}$ $R_J$ and a mass of $M_P=0.579_{-0.027}^{+0.028}$ $M_J$. The star has a low metallicity for a hot Jupiter host, $[mathrm{Fe}/mathrm{H}]=-0.15 pm 0.05$.
Kepler mission is a powerful tool in the study the different types of astrophysical objects or events in the distant Universe. However, the spacecraft gives also the opportunity to study Solar System objects passing in the telescope field of view. Th e aim of this paper is to determine for the first time the rotation periods of a number of asteroids observed by the Kepler satellite during the K2 Campaign 9. Using publicly available data from Kepler mission we have used the Modified Causal Pixel Model (MCPM) code to perform the aperture-like and PRF-like photometry of 1026 asteroids. The results allowed us to determine the rotation periods for 188 asteroids. For asteroids with rotation periods previously measured, we compared the results and found very good agreement. There are additional 20 asteroids for which we obtained lower limits on rotation periods and in all cases these limits are at least 100 h.
Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in forward-facing mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16, and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V=6.9, K=5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a $2.56 pm 0.18 R_oplus$ planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow-up.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا