ترغب بنشر مسار تعليمي؟ اضغط هنا

Kepler K2 Campaign 9: I. Candidate short-duration events from the first space-based survey for planetary microlensing

93   0   0.0 ( 0 )
 نشر من قبل Iain McDonald
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first short-duration candidate microlensing events from the Kepler K2 mission. From late April to early July 2016, Campaign 9 of K2 obtained high temporal cadence observations over a 3.7 square degree region of the Galactic bulge. Its primary objectives were to look for evidence of a free-floating planet (FFP) population using microlensing, and demonstrate the feasibility of space-based planetary microlensing surveys. Though Kepler K2 is far from optimal for microlensing, the recently developed MCPM photometric pipeline enables us to identify and model microlensing events. We describe our blind event-selection pipeline in detail and use it to recover 22 short-duration events with effective timescales of less than 10 days previously announced by the OGLE and KMTNet ground-based surveys. We also announce five new candidate events. One of these is a caustic-crossing binary event, consistent with a bound planet and modelled as such in a companion study. The other four have very short durations (effective timescales less than 0.1 days) typical of an Earth-mass FFP population. Whilst Kepler was not designed for crowded-field photometry, the K2C9 dataset clearly demonstrates the feasibility of conducting blind space-based microlensing surveys towards the Galactic bulge.

قيم البحث

اقرأ أيضاً

The reduction of the emph{K2}s Campaign 9 (K2C9) microlensing data is challenging mostly because of the very crowded field and the unstable pointing of the spacecraft. In this work, we present the first method that can extract microlensing signals fr om this K2C9 data product. The raw light curves and the astrometric solutions are first derived, using the techniques from Soares-Furtado et al. and Huang et al. for emph{K2} dense field photometry. We then minimize and remove the systematic effect by performing simultaneous modeling with the microlensing signal. We also derive precise $(K_p-I)$ vs. $(V-I)$ color-color relations that can predict the microlensing source flux in the emph{Kepler} bandpass. By implementing the color-color relation in the light curve modeling, we show that the microlensing parameters can be better constrained. In the end, we use two example microlensing events, OGLE-2016-BLG-0980 and OGLE-2016-BLG-0940, to test our method.
We present the analysis of four candidate short duration binary microlensing events from the 2006-2007 MOA Project short event analysis. These events were discovered as a byproduct of an analysis designed to find short timescale single lens events th at may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which stellar host is only detected through binary microlensing effects. The mass ratio and separation are q = 4.9 +- 1.4 x 10^{-3} and s = 2.10 +- 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m_p = 3.7 +- 2.1 M_{Jup}, and orbits a star of M_* = 0.75{+0.33 -0.41} M_solar at a semi-major axis of a = 8.3 {+4.5 -2.7} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide separation planets with a efficiency at least as high as that for isolated planets, then we can set limits on the distribution on planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. (2011) consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semi-major axis is > 30 AU.
$K2$s Campaign 9 ($K2$C9) will conduct a $sim$3.7 deg$^{2}$ survey toward the Galactic bulge from 7/April through 1/July of 2016 that will leverage the spatial separation between $K2$ and the Earth to facilitate measurement of the microlens parallax $pi_{rm E}$ for $gtrsim$127 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this white paper we provide an overview of the $K2$C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of $K2$C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in $K2$C9, which constitutes an important pathfinding mission and community exercise in anticipation of $WFIRST$.
Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in forward-facing mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16, and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V=6.9, K=5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a $2.56 pm 0.18 R_oplus$ planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow-up.
The Zwicky Transient Facility (ZTF) is currently surveying the entire northern sky, including dense Galactic plane fields. Here, we present preliminary results of the search for gravitational microlensing events in the ZTF data collected from the beg inning of the survey (March 20, 2018) through June 30, 2019.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا