ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the mass of accreting black holes in ultraluminous X-ray sources with ultrafast outflows

72   0   0.0 ( 0 )
 نشر من قبل Davide Fiacconi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Davide Fiacconi




اسأل ChatGPT حول البحث

The nature of ultraluminous X-ray sources (ULXs) -- off-nuclear extra-galactic sources with luminosity, assumed isotropic, $gtrsim 10^{39}$ erg s$^{-1}$ -- is still debated. One possibility is that ULXs are stellar black holes accreting beyond the Eddington limit. This view has been recently reinforced by the discovery of ultrafast outflows at $sim 0.1$-$0.2c$ in the high resolution spectra of a handful of ULXs, as predicted by models of supercritical accretion discs. Under the assumption that ULXs are powered by super-Eddington accretion onto black holes, we use the properties of the observed outflows to self-consistently constrain their masses and accretion rates. We find masses $lesssim 100$ M$_{odot}$ and typical accretion rates $sim 10^{-5}$ M$_{odot}$ yr$^{-1}$, i.e. $approx 10$ times larger than the Eddington limit calculated with a radiative efficiency of 0.1. However, the emitted luminosity is only $approx 10%$ beyond the Eddington luminosity, because most of the energy released in the inner part of the accretion disc is used to accelerate the wind, which implies radiative efficiency $sim 0.01$. Our results are consistent with a formation model where ULXs are black hole remnants of massive stars evolved in low-metallicity environments.



قيم البحث

اقرأ أيضاً

130 - Rob Fender 2012
We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stell ar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and co rresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.
235 - Andrew D. Sutton 2012
We present the results from an X-ray and optical study of a new sample of eight extreme luminosity ultraluminous X-ray source (ULX) candidates, which were selected as the brightest ULXs (with L_X > 5x10^40 erg/s) located within 100 Mpc identified in a cross correlation of the 2XMM-DR1 and RC3 catalogues. These objects are so luminous that they are difficult to describe with current models of super-Eddington accretion onto all but the most massive stellar remnants; hence they are amongst the most plausible candidates to host larger, intermediate-mass black holes (IMBHs). Two objects are luminous enough in at least one observation to be classed as hyperluminous X-ray source (HLX) candidates, including one persistent HLX in an S0 galaxy that (at 3x10^41 erg/s) is the second most luminous HLX yet detected. The remaining seven sources are located in spiral galaxies, and several appear to be closely associated with regions of star formation as is common for many less luminous ULXs. However, the X-ray characteristics of these extreme ULXs appear to diverge from the less luminous objects. They are typically harder, possessing absorbed power-law continuum spectra with photon indexes ~ 1.7, and are potentially more variable on short timescales, with data consistent with ~ 10-20 per cent rms variability on timescales of 0.2-2 ks. These properties appear consistent with the sub-Eddington hard state, which given the observed luminosities of these objects suggests the presence of IMBHs with masses in the range 10^3-10^4 M_Sun. As such, this strengthens the case for these brightest ULXs as good candidates for the eventual conclusive detection of the highly elusive IMBHs. However, we caution that a combination of the highest plausible super-Eddington accretion rates and the largest permitted stellar black hole remnants cannot be ruled out without future, improved observations.
To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the {it Chandra} archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the {it Chandra} bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity $geq5times10^{39}$~erg~s$^{-1}$) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the simple IMBH model - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, {it XMM-Newton} spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the {it XMM-Newton} work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 10$^{39}$~erg~s$^{-1}$, down to our sample limit of 10$^{38.3}$~erg~s$^{-1}$. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.
We present a mid-infrared (IR) sample study of nearby ultraluminous X-ray sources (ULXs) using multi-epoch observations with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Spitzer/IRAC observations taken after 2014 were obtained as part of the Spitzer Infrared Intensive Transients Survey (SPIRITS). Our sample includes 96 ULXs located within 10 Mpc. Of the 96~ULXs, 12 have candidate counterparts consistent with absolute mid-IR magnitudes of supergiants, and 16 counterparts exceeded the mid-IR brightness of single supergiants and are thus more consistent with star clusters or non-ULX background active galactic nuclei (AGN). The supergiant candidate counterparts exhibit a bi-modal color distribution in a Spitzer/IRAC color-magnitude diagram, where red and blue ULXs fall in IRAC colors $[3.6] - [4.5]sim0.7$ and $[3.6] - [4.5]sim0.0$, respectively. The mid-IR colors and absolute magnitudes of 4 red and 5 blue ULXs are consistent with that of supergiant B[e] (sgB[e]) and red supergiant (RSG) stars, respectively. While blue, RSG-like mid-IR ULX counterparts likely host RSG mass donors, we propose the red counterparts are ULXs exhibiting the B[e] phenomenon rather than hosts of sgB[e] mass donors. We show that the mid-IR excess from the red ULXs is likely due to thermal emission from circumstellar or circumbinary dust. Using dust as a probe for total mass, we estimate mass-loss rates of $dot{M}sim1times10^{-4}$ M$_odot$ yr$^{-1}$ in dust-forming outflows of red ULXs. Based on the transient mid-IR behavior and its relatively flat spectral index, $alpha=-0.19pm0.1$, we suggest that the mid-IR emission from Holmberg IX X-1 originates from a variable jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا