ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering Red and Dusty Ultraluminous X-ray Sources with Spitzer

232   0   0.0 ( 0 )
 نشر من قبل Ryan Lau
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a mid-infrared (IR) sample study of nearby ultraluminous X-ray sources (ULXs) using multi-epoch observations with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Spitzer/IRAC observations taken after 2014 were obtained as part of the Spitzer Infrared Intensive Transients Survey (SPIRITS). Our sample includes 96 ULXs located within 10 Mpc. Of the 96~ULXs, 12 have candidate counterparts consistent with absolute mid-IR magnitudes of supergiants, and 16 counterparts exceeded the mid-IR brightness of single supergiants and are thus more consistent with star clusters or non-ULX background active galactic nuclei (AGN). The supergiant candidate counterparts exhibit a bi-modal color distribution in a Spitzer/IRAC color-magnitude diagram, where red and blue ULXs fall in IRAC colors $[3.6] - [4.5]sim0.7$ and $[3.6] - [4.5]sim0.0$, respectively. The mid-IR colors and absolute magnitudes of 4 red and 5 blue ULXs are consistent with that of supergiant B[e] (sgB[e]) and red supergiant (RSG) stars, respectively. While blue, RSG-like mid-IR ULX counterparts likely host RSG mass donors, we propose the red counterparts are ULXs exhibiting the B[e] phenomenon rather than hosts of sgB[e] mass donors. We show that the mid-IR excess from the red ULXs is likely due to thermal emission from circumstellar or circumbinary dust. Using dust as a probe for total mass, we estimate mass-loss rates of $dot{M}sim1times10^{-4}$ M$_odot$ yr$^{-1}$ in dust-forming outflows of red ULXs. Based on the transient mid-IR behavior and its relatively flat spectral index, $alpha=-0.19pm0.1$, we suggest that the mid-IR emission from Holmberg IX X-1 originates from a variable jet.



قيم البحث

اقرأ أيضاً

We present a detailed, broadband X-ray spectral analysis of the ULX pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the $XMM$-$Newton$, $NuSTAR$ and $Chandra$ observatories. The broadband $XMM$-$Newton+NuSTAR$ spectrum of P13 is qualitatively similar to the rest of the ULX sample with broadband coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures $sim$0.5 and $sim$1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be similar, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron stars magnetic field soon after its onset, implying a limit of $B lesssim 6 times 10^{12}$ G for the dipolar component of the central neutron stars magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual off states. These data require both a hard powerlaw component, suggesting residual accretion onto the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.
We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations ind icates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relation to the observed behaviors of ULXs. We review the evidence for intermediate mass black holes in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early universe, and the origin of the black hole binary recently detected via gravitational waves.
Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 Msun black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate- mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits very well most of the ULX spectra analyzed here, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We found also that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM-Newton and Chandra observations. We use three models to describe the observed spectra: a power-law, a multi-colour disc (MCD) and a combination of these two mode ls. We find that 7 ULXs show a correlation between the luminosity Lx and the photon index Gamma. Furthermore, 4 out of these 7 ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an Lx-Gamma anti-correlation. The spectra of 4 ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity-temperature diagrams. Finally we show that the `soft excess reported for many of these ULXs at about 0.2 keV seems to roughly follow a trend Lsoft propto T^{-3.5} when modelled with a power-law plus a `cool MCD model. This is contrary to the L propto T^4 relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a about 10 solar mass black hole.
Ultraluminous X-ray sources (ULXs) are a class of accreting compact objects with X-ray luminosities above 1e39 erg/s. The ULX population counts several hundreds objects but only a minor fraction is well studied. Here we present a detailed analysis of all ULXs hosted in the galaxy NGC 7456. It was observed in X-rays only once in the past (in 2005) by XMM-Newton, but the observation was short and strongly affected by high background. In 2018, we obtained a new, deeper (~90 ks) XMM-Newton observation that allowed us to perform a detailed characterization of the ULXs hosted in the galaxy. ULX-1 and ULX-2, the two brightest objects (Lx~(6-10)e39 erg/s), have spectra that can be described by a two-thermal component model as often found in ULXs. ULX-1 shows also one order of magnitude in flux variability on short-term timescales (hundreds to thousand ks). The other sources (ULX-3 and ULX-4) show flux changes of at least an order of magnitude, and these objects may be candidate transient ULXs although longer X-ray monitoring or further studies are required to ascribe them to the ULX population. In addition, we found a previously undetected source that might be a new candidate ULX (labelled as ULX-5) with a luminosity of ~1e39 erg/s and hard power-law spectral shape, whose nature is still unclear and for which a background Active Galactic Nucleus cannot be excluded. We discuss the properties of all the ULXs in NGC 7456 within the framework of super-Eddington accretion onto stellar mass compact objects. Although no pulsations were detected, we cannot exclude that the sources host neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا