ﻻ يوجد ملخص باللغة العربية
A semiclassical model supporting the destructive interference interpretation of zero-width resonances (ZWR) is extended to wavelengths inducing c_minus-type curve crossing situations in Na2 strong field dissociation. This opens the possibility to get critical couples of wavelengths lambda and field intensities I to reach ZWRs associated with the ground vibrationless level v = 0, that, contrary to other vibrational states (v > 0), is not attainable for the commonly referred c+-type crossings. The morphology of such ZWRs in the laser (I; lambda) parameter plane and their usefulness in filtration strategies aiming at molecular cooling down to the ground v = 0 state are examined within the frame of an adiabatic transport scheme.
In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected Zero-Width Resonances (ZWR), with in principle infinite lifetimes. Their interest in inducing basic quenching mechanisms have
We report here on the production of an ultracold gas of tightly bound Rb2 molecules in the ro-vibrational triplet ground state, close to quantum degeneracy. This is achieved by optically transferring weakly bound Rb2 molecules to the absolute lowest
We propose a method for building a squeezed vacuum state laser with zero diffusion, which results from the introduction of the reservoir engineering technique into the laser theory. As well as the reservoir engineering, our squeezed vacuum laser dema
We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using linear optics, an ancilla photon, and measurem
The interaction between superconducting qubits and one-dimensional microwave transmission lines has been studied experimentally and theoretically in the past two decades. In this work, we investigate the spontaneous emission of an initially excited a