ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracold Molecules in the Ro-Vibrational Triplet Ground State

139   0   0.0 ( 0 )
 نشر من قبل Johannes Hecker Denschlag
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report here on the production of an ultracold gas of tightly bound Rb2 molecules in the ro-vibrational triplet ground state, close to quantum degeneracy. This is achieved by optically transferring weakly bound Rb2 molecules to the absolute lowest level of the ground triplet potential with a transfer efficiency of about 90%. The transfer takes place in a 3D optical lattice which traps a sizeable fraction of the tightly bound molecules with a lifetime exceeding 200 ms.

قيم البحث

اقرأ أيضاً

We report the creation of a sample of over 1000 ultracold $^{87}$RbCs molecules in the lowest rovibrational ground state, from an atomic mixture of $^{87}$Rb and Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated R aman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be $h c times 3811.576(1)$ cm$^{-1}$ and the $|v=0, J=0>$ to $|v=0, J=2>$ splitting to be $h times 2940.09(6)$ MHz. Stark spectroscopy of the rovibrational ground state yields an electric dipole moment of 1.225(3)(8) D, where the values in parentheses are the statistical and systematic uncertainties, respectively. We demonstrate that a space-fixed dipole moment of 0.355(2)(4) D is accessible in RbCs, which is substantially higher than in previous work.
We report on the creation of ultracold 84Sr2 molecules in the electronic ground state. The molecules are formed from atom pairs on sites of an optical lattice using stimulated Raman adiabatic passage (STIRAP). We achieve a transfer efficiency of 30% and obtain 4x10^4 molecules with full control over the external and internal quantum state. STIRAP is performed near the narrow 1S0-3P1 intercombination transition, using a vibrational level of the 0u potential as intermediate state. In preparation of our molecule association scheme, we have determined the binding energies of the last vibrational levels of the 0u, 1u excited-state, and the 1Sigma_g^+ ground-state potentials. Our work overcomes the previous limitation of STIRAP schemes to systems with Feshbach resonances, thereby establishing a route that is applicable to many systems beyond bi-alkalis.
We examine dark quantum superposition states of weakly bound Rb2 Feshbach molecules and tightly bound triplet Rb2 molecules in the rovibrational ground state, created by subjecting a pure sample of Feshbach molecules in an optical lattice to a bichro matic Raman laser field. We analyze both experimentally and theoretically the creation and dynamics of these dark states. Coherent wavepacket oscillations of deeply bound molecules in lattice sites, as observed in one of our previous experiments, are suppressed due to laser-induced phase locking of molecular levels. This can be understood as the appearance of a novel multilevel dark state. In addition, the experimental methods developed help to determine important properties of our coupled atom / laser system.
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties li ke size, polarizability and type of binding they inherit from the Rydberg atom are of interest. An open question in the field is the reduced lifetime of the molecules compared to the corresponding atomic Rydberg states. In this letter we present an experimental study on the lifetimes of the ^3Sigma (5s-35s) molecule in its vibrational ground state and in an excited state. We show that the lifetimes depends on the density of ground state atoms and that this can be described in the frame of a classical scattering between the molecules and ground state atoms. We also find that the excited molecular state has an even more reduced lifetime compared to the ground state which can be attributed to an inward penetration of the bound atomic pair due to imperfect quantum reflection that takes place in the special shape of the molecular potential.
109 - R. Vexiau 2015
We have calculated the isotropic $C_6$ coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state $ X^1Sigma^+$. We consider the ten species made up of $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. Following our previous work [M.~Lepers textit{et.~al.}, Phys.~Rev.~A textbf{88}, 032709 (2013)] we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it is applied for each of the three contributions to the sum-over-state formula. Our results are particularly relevant in the context of inelastic and reactive collisions between ultracold bialkali molecules, in deeply bound or in Feshbach levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا