ﻻ يوجد ملخص باللغة العربية
This paper concerns a controllability problem for blowup points on heat equation. It can be described as follows: In the absence of control, the solution to the linear heat system globally exists in a bounded domain $Omega$. While, for a given time $T>0$ and a point $a$ in this domain, we find a feedback control, which is acted on an internal subset $omega$ of this domain, such that the corresponding solution to this system blows up at time $T$ and holds unique point $a$. We show that $ain omega$ can be the unique blowup point of the corresponding solution with a certain feedback control, and for any feedback control, $ain Omegasetminus overline{omega}$ could not be the unique blowup point.
The aim of this paper is to perform a Stackelberg strategy to control parabolic equations. We have one control, textit{the leader}, that is responsible for a null controllability property; additionally, we have a control textit{the follower} that sol
Observability inequalities on lattice points are established for non-negative solutions of the heat equation with potentials in the whole space. As applications, some controllability results of heat equations are derived by the above-mentioned observability inequalities.
We address the following problem: given a Riemannian manifold $(M,g)$ and small parameters $varepsilon>0$ and $v>0$, is it possible to find $T>0$ and an absolutely continuous map $x:[0,T]rightarrow M, tmapsto x(t)$ satisfying $|dot{x}|_{infty}leq v$
In this paper we study the internal exact controllability for a second order linear evolution equation defined in a two-component domain. On the interface we prescribe a jump of the solution proportional to the conormal derivatives, meanwhile a homog
We are concerned about the controllability of a general linear hyperbolic system of the form $partial_t w (t, x) = Sigma(x) partial_x w (t, x) + gamma C(x) w(t, x) $ ($gamma in mR$) in one space dimension using boundary controls on one side. More pre