ﻻ يوجد ملخص باللغة العربية
We consider the searching for a trail in a maze composite hypothesis testing problem, in which one attempts to detect an anomalous directed path in a lattice 2D box of side n based on observations on the nodes of the box. Under the signal hypothesis, one observes independent Gaussian variables of unit variance at all nodes, with zero, mean off the anomalous path and mean mu_n on it. Under the null hypothesis, one observes i.i.d. standard Gaussians on all nodes. Arias-Castro et al. (2008) showed that if the unknown directed path under the signal hypothesis has known the initial location, then detection is possible (in the minimax sense) if mu_n >> 1/sqrt log n, while it is not possible if mu_n << 1/ log nsqrt log log n. In this paper, we show that this result continues to hold even when the initial location of the unknown path is not known. As is the case with Arias-Castro et al. (2008), the upper bound here also applies when the path is undirected. The improvement is achieved by replacing the linear detection statistic used in Arias-Castro et al. (2008) with a polynomial statistic, which is obtained by employing a multi-scale analysis on a quadratic statistic to bootstrap its performance. Our analysis is motivated by ideas developed in the context of the analysis of random polymers in Lacoin (2010).
This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixi
Environments with immobile obstacles or void regions that inhibit and alter the motion of individuals within that environment are ubiquitous. Correlation in the location of individuals within such environments arises as a combination of the mechanism
Data observed at high sampling frequency are typically assumed to be an additive composite of a relatively slow-varying continuous-time component, a latent stochastic process or a smooth random function, and measurement error. Supposing that the late
A new vision in multidimensional statistics is proposed impacting severalareas of application. In these applications, a set of noisy measurementscharacterizing the repeatable response of a process is known as a realizationand can be seen as a single
We consider the statistical inference for noisy incomplete 1-bit matrix. Instead of observing a subset of real-valued entries of a matrix M, we only have one binary (1-bit) measurement for each entry in this subset, where the binary measurement follo