ﻻ يوجد ملخص باللغة العربية
We consider the statistical inference for noisy incomplete 1-bit matrix. Instead of observing a subset of real-valued entries of a matrix M, we only have one binary (1-bit) measurement for each entry in this subset, where the binary measurement follows a Bernoulli distribution whose success probability is determined by the value of the entry. Despite the importance of uncertainty quantification to matrix completion, most of the categorical matrix completion literature focus on point estimation and prediction. This paper moves one step further towards the statistical inference for 1-bit matrix completion. Under a popular nonlinear factor analysis model, we obtain a point estimator and derive its asymptotic distribution for any linear form of M and latent factor scores. Moreover, our analysis adopts a flexible missing-entry design that does not require a random sampling scheme as required by most of the existing asymptotic results for matrix completion. The proposed estimator is statistically efficient and optimal, in the sense that the Cramer-Rao lower bound is achieved asymptotically for the model parameters. Two applications are considered, including (1) linking two forms of an educational test and (2) linking the roll call voting records from multiple years in the United States senate. The first application enables the comparison between examinees who took different test forms, and the second application allows us to compare the liberal-conservativeness of senators who did not serve in the senate at the same time.
This paper considers distributed statistical inference for general symmetric statistics %that encompasses the U-statistics and the M-estimators in the context of massive data where the data can be stored at multiple platforms in different locations.
We propose statistical inferential procedures for panel data models with interactive fixed effects in a kernel ridge regression framework.Compared with traditional sieve methods, our method is automatic in the sense that it does not require the choic
In this paper, we survey some recent results on statistical inference (parametric and nonparametric statistical estimation, hypotheses testing) about the spectrum of stationary models with tapered data, as well as, a question concerning robustness of
In this paper, we study the asymptotic behavior of the extreme eigenvalues and eigenvectors of the high dimensional spiked sample covariance matrices, in the supercritical case when a reliable detection of spikes is possible. Especially, we derive th
In this paper we consider the linear regression model $Y =S X+varepsilon $ with functional regressors and responses. We develop new inference tools to quantify deviations of the true slope $S$ from a hypothesized operator $S_0$ with respect to the Hi