ﻻ يوجد ملخص باللغة العربية
Many nearby AGNs display a significant short-term variability. In this work we re-analyze photometric data of four active galactic nuclei observed by Kepler in order to study the flickering activity, having as main goal that of searching for multiple components in the power density spectra. We find that all four objects have similar characteristics, with two break frequencies at approximately log(f/Hz)=-5.2 and -4.7. We consider some physical phenomena whose characteristic time-scales are consistent with those observed, in particular mass accretion fluctuations in the inner geometrically thick disc (hot X-ray corona) and unstable relativistic Rayleigh-Taylor modes. The former is supported by detection of the same break frequencies in the Swift X-ray data of ZW229-15. We also discuss rms-flux relations, and we detect a possible typical linear trend at lower flux levels. Our findings support the hypothesis of a multiplicative character of variability, in agreement with the propagating accretion fluctuation model.
We analysed the light curves of four active galactic nuclei (AGN) from the Kepler field, and find multicomponent power density spectra with characteristic frequencies that are surprisingly similar to other Kepler AGNs (including ZW229-15). An identic
The high quality light curves of Kepler space telescope make it possible to analyze the optical variability of AGNs with an unprecedented time resolution. Studying the asymmetry in variations could give independent constraints on the physical models
Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to sea
In most of Seyfert-1 active galactic nucei (AGN) the optical linear continuum polarization degree is usually small (less than 1%) and the polarization position angle is nearly parallel to the AGN radio-axis. However, there are many types-1 AGNs with
In Kawahara et al. (2018) and Masuda et al. (2019), we reported the discovery of four self-lensing binaries consisting of F/G-type stars and (most likely) white dwarfs whose masses range from 0.2 to 0.6 solar masses. Here we present their updated sys