ﻻ يوجد ملخص باللغة العربية
We analysed the light curves of four active galactic nuclei (AGN) from the Kepler field, and find multicomponent power density spectra with characteristic frequencies that are surprisingly similar to other Kepler AGNs (including ZW229-15). An identical time series analysis of randomly selected planet candidate stars revealed the same features, suggesting an instrumental origin for the variability. This result is enigmatic, as these signals have been confirmed for ZW229-15 using independent observations from Swift. Based on our re-analysis of these Swift data and test simulations, we now distinguish the instrumental artifact in Kepler data from the real pattern in Swift observations. It appears that some other AGNs observed with instruments such as XMM-Newton show similar frequency components. This supports the conclusion that the similarity between the variability timescales of the Kepler artifact and real Swift features is coincidental.
Many nearby AGNs display a significant short-term variability. In this work we re-analyze photometric data of four active galactic nuclei observed by Kepler in order to study the flickering activity, having as main goal that of searching for multiple
The high quality light curves of Kepler space telescope make it possible to analyze the optical variability of AGNs with an unprecedented time resolution. Studying the asymmetry in variations could give independent constraints on the physical models
Supernova remnants (SNRs) have a variety of overall morphology as well as rich structures over a wide range of scales. Quantitative study of these structures can potentially reveal fluctuations of density and magnetic field originating from the inter
The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. T
The $textit{Kepler}$ satellite potentially provides the highest precision photometry of active galactic nuclei (AGN) available to investigate short-timescale optical variability. We targeted quasars from the Sloan Digital Sky Survey that lie in the f