ترغب بنشر مسار تعليمي؟ اضغط هنا

Four New Self-lensing Binaries from Kepler: Radial Velocity Characterization and Astrophysical Implications

80   0   0.0 ( 0 )
 نشر من قبل Kento Masuda
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Kawahara et al. (2018) and Masuda et al. (2019), we reported the discovery of four self-lensing binaries consisting of F/G-type stars and (most likely) white dwarfs whose masses range from 0.2 to 0.6 solar masses. Here we present their updated system parameters based on new radial velocity data from the Tillinghast Reflector Echelle Spectrograph at the Fred Lawrence Whipple Observatory, and the Gaia parallaxes and spectroscopic parameters of the primary stars. We also briefly discuss the astrophysical implications of these findings.

قيم البحث

اقرأ أيضاً

We report the discovery of three edge-on binaries with white dwarf companions that gravitationally magnify (instead of eclipsing) the light of their stellar primaries, as revealed by a systematic search for pulses with long periods in the Kepler phot ometry. We jointly model the self-lensing light curves and radial-velocity orbits to derive the white dwarf masses, all of which are close to 0.6 Solar masses. The orbital periods are long, ranging from 419 to 728 days, and the eccentricities are low, all less than 0.2. These characteristics are reminiscent of the orbits found for many blue stragglers in open clusters and the field, for which stable mass transfer due to Roche-lobe overflow from an evolving primary (now a white dwarf) has been proposed as the formation mechanism. Because the actual masses for our three white dwarf companions have been accurately determined, these self-lensing systems would provide excellent tests for models of interacting binaries.
Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binari es with a red-giant component, discovered from observations of the NASA Kepler space mission. We first discuss which effects and features of tidal interactions are detectable in photometry, spectroscopy and the seismic analysis. In a second step, the sample of binary systems observed with Kepler, is compared to the well studied sample of Verbunt & Phinney (1995, hereafter VP95). We find that this study of circularization of systems hosting evolving red-giant stars with deep convective envelopes is also well applicable to the red-giant binaries in the sample of Kepler stars.
We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for substellar companions to young stars using high contrast imaging. Although stars with known stellar companions within SPHERE field of view (<5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. 27% of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these data sets. We then combined SPHERE data with literature and archival ones, TESS light curves and Gaia parallaxes and proper motions, to characterise these systems as completely as possible. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for the separation range 50-500 mas (period range a few years - a few tens of years), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight some interesting trends in the mass ratio and period distribution. We also found that, for the few objects for which such estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars having enough data, which favour a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting ne ar orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 21 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 d and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity - period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVAs unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVAs robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrographs intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional sum-of-Gaussians instrumental profile: 1.8 m s$^{-1}$ over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا