ﻻ يوجد ملخص باللغة العربية
We introduce and solve exactly a class of interacting particle systems in one dimension where particles hop asymmetrically. In its simplest form, namely asymmetric zero range process (AZRP), particles hop on a one dimensional periodic lattice with asymmetric hop rates; the rates for both right and left moves depend only on the occupation at the departure site but their functional forms are different. We show that AZRP leads to a factorized steady state (FSS) when its rate-functions satisfy certain constraints. We demonstrate with explicit examples that AZRP exhibits certain interesting features which were not possible in usual zero range process. Firstly, it can undergo a condensation transition depending on how often a particle makes a right move compared to a left one and secondly, the particle current in AZRP can reverse its direction as density is changed. We show that these features are common in other asymmetric models which have FSS, like the asymmetric misanthrope process where rate functions for right and left hops are different, and depend on occupation of both the departure and the arrival site. We also derive sufficient conditions for having cluster-factorized steady states for finite range process with such asymmetric rate functions and discuss possibility of condensation there.
The steady-state distributions and dynamical behaviour of Zero Range Processes with hopping rates which are non-monotonic functions of the site occupation are studied. We consider two classes of non-monotonic hopping rates. The first results in a con
We consider a non-conserving zero-range process with hopping rate proportional to the number of particles at each site. Particles are added to the system with a site-dependent creation rate, and vanish with a uniform annihilation rate. On a fully-con
We study a class of nonequilibrium lattice models on a ring where particles hop in a particular direction, from a site to one of its (say, right) nearest neighbours, with a rate that depends on the occupation of all the neighbouring sites within a ra
We calculate the exact stationary distribution of the one-dimensional zero-range process with open boundaries for arbitrary bulk and boundary hopping rates. When such a distribution exists, the steady state has no correlations between sites and is un
A generalized zero-range process with a limited number of long-range interactions is studied as an example of a transport process in which particles at a T-junction make a choice of which branch to take based on traffic levels on each branch. The sys