ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero range and finite range processes with asymmetric rate functions

204   0   0.0 ( 0 )
 نشر من قبل Amit Chatterjee
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and solve exactly a class of interacting particle systems in one dimension where particles hop asymmetrically. In its simplest form, namely asymmetric zero range process (AZRP), particles hop on a one dimensional periodic lattice with asymmetric hop rates; the rates for both right and left moves depend only on the occupation at the departure site but their functional forms are different. We show that AZRP leads to a factorized steady state (FSS) when its rate-functions satisfy certain constraints. We demonstrate with explicit examples that AZRP exhibits certain interesting features which were not possible in usual zero range process. Firstly, it can undergo a condensation transition depending on how often a particle makes a right move compared to a left one and secondly, the particle current in AZRP can reverse its direction as density is changed. We show that these features are common in other asymmetric models which have FSS, like the asymmetric misanthrope process where rate functions for right and left hops are different, and depend on occupation of both the departure and the arrival site. We also derive sufficient conditions for having cluster-factorized steady states for finite range process with such asymmetric rate functions and discuss possibility of condensation there.



قيم البحث

اقرأ أيضاً

The steady-state distributions and dynamical behaviour of Zero Range Processes with hopping rates which are non-monotonic functions of the site occupation are studied. We consider two classes of non-monotonic hopping rates. The first results in a con densed phase containing a large (but subextensive) number of mesocondensates each containing a subextensive number of particles. The second results in a condensed phase containing a finite number of extensive condensates. We study the scaling behaviour of the peak in the distribution function corresponding to the condensates in both cases. In studying the dynamics of the condensate we identify two timescales: one for creation, the other for evaporation of condensates at a given site. The scaling behaviour of these timescales is studied within the Arrhenius law approach and by numerical simulations.
115 - Pascal Grange 2019
We consider a non-conserving zero-range process with hopping rate proportional to the number of particles at each site. Particles are added to the system with a site-dependent creation rate, and vanish with a uniform annihilation rate. On a fully-con nected lattice with a large number of sites, the mean-field geometry leads to a negative binomial law for the number of particles at each site, with parameters depending on the hopping, creation and annihilation rates. This model can be mapped to population dynamics (if the creation rates are reproductive fitnesses in a haploid population, and the hopping rate is the mutation rate). It can also be mapped to a Bianconi--Barabasi model of a growing network with random rewiring of links (if creation rates are the rates of acquisition of links by nodes, and the hopping rate is the rewiring rate). The steady state has recently been worked out and gives rise to occupation numbers that reproduce Kingmans house-of-cards model of selection and mutation. In this paper we solve the master equation using a functional method, which yields integral equations satisfied by the occupation numbers. The occupation numbers are shown to forget initial conditions at an exponential rate that decreases linearly with the fitness level. Moreover, they can be computed exactly in the Laplace domain, which allows to obtain the steady state of the system under resetting. The result modifies the house-of-cards result by simply adding a skewed version of the initial conditions, and by adding the resetting rate to the hopping rate.
We study a class of nonequilibrium lattice models on a ring where particles hop in a particular direction, from a site to one of its (say, right) nearest neighbours, with a rate that depends on the occupation of all the neighbouring sites within a ra nge R. This finite range process (FRP) for R=0 reduces to the well known zero-range process (ZRP), giving rise to a factorized steady state (FSS) for any arbitrary hop rate. We show that, provided the hop rates satisfy a specific condition, the steady state of FRP can be written as a product of cluster-weight function of (R+1) occupation variables. We show that, for a large class of cluster-weight functions, the cluster-factorized steady state admits a finite dimensional transfer-matrix formulation, which helps in calculating the spatial correlation functions and subsystem mass distributions exactly. We also discuss a criterion for which the FRP undergoes a condensation transition.
112 - E. Levine , D. Mukamel , 2004
We calculate the exact stationary distribution of the one-dimensional zero-range process with open boundaries for arbitrary bulk and boundary hopping rates. When such a distribution exists, the steady state has no correlations between sites and is un iquely characterized by a space-dependent fugacity which is a function of the boundary rates and the hopping asymmetry. For strong boundary drive the system has no stationary distribution. In systems which on a ring geometry allow for a condensation transition, a condensate develops at one or both boundary sites. On all other sites the particle distribution approaches a product measure with the finite critical density rho_c. In systems which do not support condensation on a ring, strong boundary drive leads to a condensate at the boundary. However, in this case the local particle density in the interior exhibits a complex algebraic growth in time. We calculate the bulk and boundary growth exponents as a function of the system parameters.
A generalized zero-range process with a limited number of long-range interactions is studied as an example of a transport process in which particles at a T-junction make a choice of which branch to take based on traffic levels on each branch. The sys tem is analysed with a self-consistent mean-field approximation which allows phase diagrams to be constructed. Agreement between the analysis and simulations is found to be very good.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا