ﻻ يوجد ملخص باللغة العربية
We study a class of nonequilibrium lattice models on a ring where particles hop in a particular direction, from a site to one of its (say, right) nearest neighbours, with a rate that depends on the occupation of all the neighbouring sites within a range R. This finite range process (FRP) for R=0 reduces to the well known zero-range process (ZRP), giving rise to a factorized steady state (FSS) for any arbitrary hop rate. We show that, provided the hop rates satisfy a specific condition, the steady state of FRP can be written as a product of cluster-weight function of (R+1) occupation variables. We show that, for a large class of cluster-weight functions, the cluster-factorized steady state admits a finite dimensional transfer-matrix formulation, which helps in calculating the spatial correlation functions and subsystem mass distributions exactly. We also discuss a criterion for which the FRP undergoes a condensation transition.
Non-equilibrium real-space condensation is a phenomenon in which a finite fraction of some conserved quantity (mass, particles, etc.) becomes spatially localised. We review two popular stochastic models of hopping particles that lead to condensation
We introduce and solve exactly a class of interacting particle systems in one dimension where particles hop asymmetrically. In its simplest form, namely asymmetric zero range process (AZRP), particles hop on a one dimensional periodic lattice with as
We study the effects of the finite number of experimental data on the computation of a generalized fluctuation-dissipation relation around a nonequilibrium steady state of a Brownian particle in a toroidal optical trap. We show that the finite sampli
Using the matrix product ansatz, we obtain solutions of the steady-state distribution of the two-species open one-dimensional zero range process. Our solution is based on a conventionally employed constraint on the hop rates, which eventually allows
A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It i