A generalized zero-range process with a limited number of long-range interactions is studied as an example of a transport process in which particles at a T-junction make a choice of which branch to take based on traffic levels on each branch. The system is analysed with a self-consistent mean-field approximation which allows phase diagrams to be constructed. Agreement between the analysis and simulations is found to be very good.
We calculate the exact stationary distribution of the one-dimensional zero-range process with open boundaries for arbitrary bulk and boundary hopping rates. When such a distribution exists, the steady state has no correlations between sites and is un
iquely characterized by a space-dependent fugacity which is a function of the boundary rates and the hopping asymmetry. For strong boundary drive the system has no stationary distribution. In systems which on a ring geometry allow for a condensation transition, a condensate develops at one or both boundary sites. On all other sites the particle distribution approaches a product measure with the finite critical density rho_c. In systems which do not support condensation on a ring, strong boundary drive leads to a condensate at the boundary. However, in this case the local particle density in the interior exhibits a complex algebraic growth in time. We calculate the bulk and boundary growth exponents as a function of the system parameters.
A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It i
s found that the transition into the absorbing state is continuous and is characterized by continuously varying critical exponents. This model differs from the previously studied non-local directed percolation model, where particles are created by unrestricted Levy flights. It is motivated by recent studies of non-equilibrium wetting indicating that this type of non-local processes play a role in the unbinding transition. Other non-local processes which have been suggested to exist within the context of wetting are considered as well.
We study two dimensional stripe forming systems with competing repulsive interactions decaying as $r^{-alpha}$. We derive an effective Hamiltonian with a short range part and a generalized dipolar interaction which depends on the exponent $alpha$. An
approximate map of this model to a known XY model with dipolar interactions allows us to conclude that, for $alpha <2$ long range orientational order of stripes can exist in two dimensions, and establish the universality class of the models. When $alpha geq 2$ no long-range order is possible, but a phase transition in the KT universality class is still present. These two different critical scenarios should be observed in experimentally relevant two dimensional systems like electronic liquids ($alpha=1$) and dipolar magnetic films ($alpha=3$). Results from Langevin simulations of Coulomb and dipolar systems give support to the theoretical results.
Explicit expressions for arrival times of particles moving in a one-dimensional Zero-Range Process (ZRP) are computed. Particles are fed into the ZRP from an injection site and can also evaporate from anywhere in the interior of the ZRP. Two dynamics
are considered; bulk dynamics, where particle hopping and decay is proportional to the numqber of particles at each site, and surface dynamics, where only the top particle at each site can hop or evaporate. We find exact solutions in the bulk dynamics case and for a single-site ZRP obeying surface dynamics. For a multisite ZRP obeying surface dynamics, we compare simulations with approximations obtained from the steady-state limit, where mean interarrival times for both models are equivalent. Our results highlight the competition between injection and evaporation on the arrival times of particles to an absorbing site.
We present an effective evolution equation for a coarse-grained distribution function of a long-range-interacting system preserving the symplectic structure of the non-collisional Boltzmann, or Vlasov, equation. We first derive a general form of such
an equation based on symmetry considerations only. Then, we explicitly derive the equation for one-dimensional systems, finding that it has the form predicted on general grounds. Finally, we use such an equation to predict the dependence of the damping times on the coarse-graining scale and numerically check it for some one-dimensional models, including the Hamiltonian Mean Field (HMF) model, a scalar field with quartic interaction, a 1-d self-gravitating system, and the Self-Gravitating Ring (SGR).