ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit interaction in a dual gated InAs/GaSb quantum well

119   0   0.0 ( 0 )
 نشر من قبل Arjan Beukman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field the quantum well can be tuned between a single carrier regime with exclusively electrons as carriers and a two-carriers regime where electrons and holes coexist. Spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de Haas oscillations. In the single carrier regime the linear Dresselhaus strength is characterized by $beta =$ 28.5 meV$AA$ and the Rashba coefficient $alpha$ is tuned from 75 to 53 meV$AA$ by changing the electric field. In the two-carriers regime the spin splitting shows a nonmonotonic behavior with gate voltage, which is consistent with our band structure calculations.

قيم البحث

اقرأ أيضاً

We study the spin-orbit interaction (SOI) in InAs/ GaSb and InAs quantum wells. We show through temperature- and gate-dependent magnetotransport measurements of weak antilocalization that the dominant spin-orbit relaxation mechanism in our low-mobili ty heterostructures is Elliott-Yafet and not Dyakonov-Perel in the form of the Rashba or Dresselhaus SOI as previously suggested. We compare our findings with recent work on this material system and show that the SOI length lies within the same range. The SOI length may be controlled using an electrostatic gate, opening up prospects for developing spintronic applications.
Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can excee d the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electron-like and hole-like states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs/GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in $e^2/h$ steps and a non-trivial Berry phase.
We present transport measurements on a lateral p-n junction in an inverted InAs/GaSb double quantum well at zero and nonzero perpendicular magnetic fields. At a zero magnetic field, the junction exhibits diodelike behavior in accordance with the pres ence of a hybridization gap. With an increasing magnetic field, we explore the quantum Hall regime where spin-polarized edge states with the same chirality are either reflected or transmitted at the junction, whereas those of opposite chirality undergo a mixing process, leading to full equilibration along the width of the junction independent of spin. These results lay the foundations for using p-n junctions in InAs/GaSb double quantum wells to probe the transition between the topological quantum spin Hall and quantum Hall states.
174 - M. Studer , G. Salis , K. Ensslin 2009
We study the tunability of the spin-orbit interaction in a two-dimensional electron gas with a front and a back gate electrode by monitoring the spin precession frequency of drifting electrons using time-resolved Kerr rotation. The Rashba spin splitt ing can be tuned by the gate biases, while we find a small Dresselhaus splitting that depends only weakly on the gating. We determine the absolute values and signs of the two components and show that for zero Rashba spin splitting the anisotropy of the spin-dephasing rate vanishes.
Anisotropy of spin-orbit interaction (SOI) is studied for a single uncapped InAs self-assembled quantum dot (SAQD) holding just a few electrons. The SOI energy is evaluated from anti-crossing or SOI induced hybridization between the ground and excite d states with opposite spins. The magnetic angular dependence of the SOI energy falls on an absolute cosine function for azimuthal rotation, and a cosine-like function for tilting rotation. The SOI energy is even quenched at a specific rotation. These angular dependence compare well to calculation of Rashba SOI in a two-dimensional harmonic potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا