ﻻ يوجد ملخص باللغة العربية
We study the tunability of the spin-orbit interaction in a two-dimensional electron gas with a front and a back gate electrode by monitoring the spin precession frequency of drifting electrons using time-resolved Kerr rotation. The Rashba spin splitting can be tuned by the gate biases, while we find a small Dresselhaus splitting that depends only weakly on the gating. We determine the absolute values and signs of the two components and show that for zero Rashba spin splitting the anisotropy of the spin-dephasing rate vanishes.
In layered semiconductors with spin-orbit interaction (SOI) a persistent spin helix (PSH) state with suppressed spin relaxation is expected if the strengths of the Rashba and Dresselhaus SOI terms, alpha and beta, are equal. Here we demonstrate gate
Spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field the quantum well can be tuned between a single carrier regime with exclusively electrons as carriers and a two-carriers regime where electrons and
We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The
We present a computer simulation of exciton-exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al$_{0.3}$Ga$_{0.7}$As quantum well. Fr
We carry out microphotoluminescence measurements of an acceptor-bound exciton (A^0X) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into a