ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-protected nanoscale thermometry based on spin defects in silicon carbide

72   0   0.0 ( 0 )
 نشر من قبل Junfeng Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum sensors with solid state electron spins have attracted considerable interest due to their nanoscale spatial resolution.A critical requirement is to suppress the environment noise of the solid state spin sensor.Here we demonstrate a nanoscale thermometer based on silicon carbide (SiC) electron spins.We experimentally demonstrate that the performance of the spin sensor is robust against dephasing due to a self protected machenism. The SiC thermometry may provide a promising platform for sensing in a noisy environment ,e.g. biological system sensing.



قيم البحث

اقرأ أيضاً

We report a giant thermal shift of $2.1 ,$MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the e xcited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of $100 ,$mK/Hz$^{1/2}$ for a detection volume of approximately $10^{-6} ,$mm$^{3}$. In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.
Optically active solid-state spin registers have demonstrated their unique potential in quantum computing, communication and sensing. Realizing scalability and increasing application complexity requires entangling multiple individual systems, e.g. vi a photon interference in an optical network. However, most solid-state emitters show relatively broad spectral distributions, which hinders optical interference experiments. Here, we demonstrate that silicon vacancy centres in semiconductor silicon carbide (SiC) provide a remarkably small natural distribution of their optical absorption/emission lines despite an elevated defect concentration of $approx 0.43,rm mu m^{-3}$. In particular, without any external tuning mechanism, we show that only 13 defects have to be investigated until at least two optical lines overlap within the lifetime-limited linewidth. Moreover, we identify emitters with overlapping emission profiles within diffraction limited excitation spots, for which we introduce simplified schemes for generation of computationally-relevant Greenberger-Horne-Zeilinger (GHZ) and cluster states. Our results underline the potential of the CMOS-compatible SiC platform toward realizing networked quantum technology applications.
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$. Using SiVs in bulk diamond, we achieve $70,mathrm{mK}$ precision at room temperature with a sensitivity of $360,mathrm{mK/sqrt{Hz}}$. Finally, we use SiVs in $200,mathrm{nm}$ nanodiamonds as local temperature probes with $521,mathrm{ mK/sqrt{Hz}}$ sensitivity. These results open up new possibilities for nanoscale thermometry in biology, chemistry, and physics, paving the way for control of complex nanoscale systems.
Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single photon emission, good photostability, and long spin coherence time even at room temperature. As compared to diam ond which is widely used for holding Nitrogen-vacancy centers, SiC has the advantage in terms of large-scale, high-quality and low cost growth, as well as advanced fabrication technique in optoelectronics, leading to the prospects for large scale quantum engineering. In this paper, we report experimental demonstration of the generation of nanoscale $V_{Si}$ single defect array through ion implantation without the need of annealing. $V_{Si}$ defects are generated in pre-determined locations with resolution of tens of nanometers. This can help in integrating $V_{Si}$ defects with the photonic structures which, in turn, can improve the emission and collection efficiency of $V_{Si}$ defects when it is used in spin photonic quantum network. On the other hand, the defects are shallow and they are generated $sim 40nm$ below the surface which can serve as critical resources in quantum sensing application.
General purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realise composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits a nd are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic architecture that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realise reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase estimation algorithm without and with error protection, respectively. Finally, we realise hypergraph states, which are a generalised class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا