ﻻ يوجد ملخص باللغة العربية
We show that every construction of one-time signature schemes from a random oracle achieves black-box security at most $2^{(1+o(1))q}$, where $q$ is the total number of oracle queries asked by the key generation, signing, and verification algorithms. That is, any such scheme can be broken with probability close to $1$ by a (computationally unbounded) adversary making $2^{(1+o(1))q}$ queries to the oracle. This is tight up to a constant factor in the number of queries, since a simple modification of Lamports one-time signatures (Lamport 79) achieves $2^{(0.812-o(1))q}$ black-box security using $q$ queries to the oracle. Our result extends (with a loss of a constant factor in the number of queries) also to the random permutation and ideal-cipher oracles. Since the symmetric primitives (e.g. block ciphers, hash functions, and message authentication codes) can be constructed by a constant number of queries to the mentioned oracles, as corollary we get lower bounds on the efficiency of signature schemes from symmetric primitives when the construction is black-box. This can be taken as evidence of an inherent efficiency gap between signature schemes and symmetric primitives.
Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the cir
Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity, DNF sparsification, randomness extractors, and recent advances on the ErdH{o}s-Rado sunflower conjecture. The recent breakthroug
We prove that for every $epsilon>0$ and predicate $P:{0,1}^krightarrow {0,1}$ that supports a pairwise independent distribution, there exists an instance $mathcal{I}$ of the $mathsf{Max}P$ constraint satisfaction problem on $n$ variables such that no
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in determin
Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bo