ﻻ يوجد ملخص باللغة العربية
The morphological properties of large scale structure of the Universe can be fully described by four Minkowski functionals (MFs), which provide important complementary information to other statistical observables such as the widely used 2-point statistics in configuration and Fourier spaces. In this work, for the first time, we present the differences in the morphology of large scale structure caused by modifications to general relativity (to address the cosmic acceleration problem), by measuring the MFs from N-body simulations of modified gravity and general relativity. We find strong statistical power when using the MFs to constrain modified theories of gravity: with a galaxy survey that has survey volume $sim 0.125 (h^{-1}$Gpc$)^3$ and galaxy number density $sim 1 / (h^{-1}$Mpc$)^{3}$, the two normal-branch DGP models and the F5 $f(R)$ model that we simulated can be discriminated from $Lambda$CDM at a significance level >~ 5$sigma$ with an individual MF measurement. Therefore, the MF of large scale structure is potentially a powerful probe of gravity, and its application to real data deserves active explorations.
We explore the Minkowski functionals of weak lensing convergence map to distinguish between $f(R)$ gravity and the general relativity (GR). The mock weak lensing convergence maps are constructed with a set of high-resolution simulations assuming diff
We generalize the concept of the ordinary skew-spectrum to probe the effect of non-Gaussianity on the morphology of Cosmic Microwave Background (CMB) maps in several domains: in real-space (where they are commonly known as cumulant-correlators), and
We present a morphological analysis of atom probe data of nanoscale microstructural features, using methods developed by the astrophysics community to describe the shape of superclusters of galaxies. We describe second-phase regions using Minkowski f
We present a new harmonic-domain approach for extracting morphological information, in the form of Minkowski Functionals (MFs), from weak lensing (WL) convergence maps. Using a perturbative expansion of the MFs, which is expected to be valid for the
We use Minkowski Functionals (MF) to constrain a primordial non-Gaussian contribution to the CMB intensity field as observed in the 150 GHz and 145 GHz BOOMERanG maps from the 1998 and 2003 flights, respectively, performing for the first time a joint