ترغب بنشر مسار تعليمي؟ اضغط هنا

BOOMERanG Constraints on Primordial Non-Gaussianity from Analytical Minkowski Functionals

179   0   0.0 ( 0 )
 نشر من قبل Paolo Natoli
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use Minkowski Functionals (MF) to constrain a primordial non-Gaussian contribution to the CMB intensity field as observed in the 150 GHz and 145 GHz BOOMERanG maps from the 1998 and 2003 flights, respectively, performing for the first time a joint analysis of the two datasets. A perturbative expansion of the MF formulae in the limit of a weakly non-Gaussian field yields analytical formulae, derived by Hikage et al. (2006), which can be used to constrain the coupling parameter f_NL without the need for non-Gaussian simulations. We find -1020<f_NL<390 at 95% CL, significantly improving the previous constraints by De Troia et al. (2007) on the BOOMERanG 2003 dataset. These are the best f_NL limits to date for suborbital probes.



قيم البحث

اقرأ أيضاً

Two of the most commonly used tools to constrain the primordial non-Gaussianity are the bispectrum and the Minkowski functionals of CMB temperature anisotropies. These two measures of non-Gaussianity in principle provide distinct (though correlated) information, but in the past constraints from them have only been loosely compared, and not statistically combined. In this work we evaluate, for the first time, the covariance matrix between the local non-Gaussianity coefficient fnl estimated through the bispectrum and Minkowski functionals. We find that the estimators are positively correlated, with corerlation coefficient r ~ 0.3. Using the WMAP7 data to combine the two measures and accounting for the point-source systematics, we find the combined constraint fnl=37+/-28, which has a ~20% smaller error than either of the individual constraints.
We present a new harmonic-domain approach for extracting morphological information, in the form of Minkowski Functionals (MFs), from weak lensing (WL) convergence maps. Using a perturbative expansion of the MFs, which is expected to be valid for the range of angular scales probed by most current weak-lensing surveys, we show that the study of three generalized skewness parameters is equivalent to the study of the three MFs defined in two dimensions. We then extend these skewness parameters to three associated skew-spectra which carry more information about the convergence bispectrum than their one-point counterparts. We discuss various issues such as noise and incomplete sky coverage in the context of estimation of these skew-spectra from realistic data. Our technique provides an alternative to the pixel-space approaches typically used in the estimation of MFs, and it can be particularly useful in the presence of masks with non-trivial topology. Analytical modeling of weak lensing statistics relies on an accurate modeling of the statistics of underlying density distribution. We apply three different formalisms to model the underlying dark-matter bispectrum: the hierarchical ansatz, halo model and a fitting function based on numerical simulations; MFs resulting from each of these formalisms are computed and compared. We investigate the extent to witch late-time gravity-induced non-Gaussianity (to which weak lensing is primarily sensitive) can be separated from primordial non-Gaussianity and how this separation depends on source redshift and angular scale.
We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800,000 photometric quasars from the Sloan Digital Sky Survey in the redshift range $0.5<z<3.5$. These measurements rely on the novel technique of {it extended m ode projection} to control the impact of spatially-varying systematics in a robust fashion, making use of blind analysis techniques. This allows the accurate measurement of quasar halo bias at the largest scales, while discarding as little as possible of the data. The standard local-type PNG parameters $f_mathrm{NL}$ and $g_mathrm{NL}$ both imprint a $k^{-2}$ scale-dependent effect in the bias. Constraining these individually, we obtain $-49<f_mathrm{NL}<31$ and $-2.7times10^5<g_mathrm{NL}<1.9times10^5$, while their joint constraints lead to $-105<f_mathrm{NL}<72$ and $-4.0times10^5<g_mathrm{NL}<4.9times10^5$ (all at 95% CL) . Introducing a running parameter $n_{f_mathrm{NL}}$ to constrain $b(k) propto k^{-2+n_{f_mathrm{NL}}}$ and a generalised PNG amplitude $tilde{f}_mathrm{NL}$, we obtain $-45.5 exp({3.7, n_{f_mathrm{NL}}}) < tilde{f}_mathrm{NL} < 34.4 exp({3.3, n_{f_mathrm{NL}}})$ at 95% CL. These results incorporate uncertainties in the cosmological parameters, redshift distributions, shot noise, and the bias prescription used to relate the quasar clustering to the underlying dark matter. These are the strongest constraints obtained to date on PNG using a single population of large-scale structure tracers, and are already at the level of pre-{it Planck} constraints from the cosmic microwave background. A conservative forecast for a {it Large Synoptic Survey Telescope}-like survey incorporating mode projection yields $sigma(f_mathrm{NL}) sim 5$ -- competitive with the {it Planck} result -- highlighting the power of upcoming large scale structure surveys to probe the initial conditions of the universe.
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNL^local= 2.7+/-5.8, fNL^equil= -42+/-75, and fNL^ortho= -25+-39 (68% CL statistical). NG is detected in the data; using skew-C_l statistics we find a nonzero bispectrum from residual point sources, and the ISW-lensing bispectrum at a level expected in the LambdaCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-C_l, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, 3-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, c_s geq 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction r_D geq 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the 4-point function in the local model tauNL < 2800 (95% CL). These constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal b ispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following results: f_NL^local = -0.9 +- 5.1; f_NL^equil = -26 +- 47; and f_NL^ortho = - 38 +- 24 (68%CL, statistical). These results include the low-multipole (4 <= l < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests, and are stable with respect to our 2015 measurements. Polarization bispectra display a significant improvement in robustness; they can now be used independently to set NG constraints. We consider a large number of additional cases, e.g. scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 sigma. We present model-independent reconstructions and analyses of the CMB bispectrum. Our final constraint on the local trispectrum shape is g_NLl^local = (-5.8 +-6.5) x 10^4 (68%CL, statistical), while constraints for other trispectra are also determined. We constrain the parameter space of different early-Universe scenarios, including general single-field models of inflation, multi-field and axion field parity-breaking models. Our results provide a high-precision test for structure-formation scenarios, in complete agreement with the basic picture of the LambdaCDM cosmology regarding the statistics of the initial conditions (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا