ترغب بنشر مسار تعليمي؟ اضغط هنا

Flipping growth orientation of nanographitic structures by plasma enhanced chemical vapor deposition

117   0   0.0 ( 0 )
 نشر من قبل Karuppiah Ganesan Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanographitic structures (NGSs) with multitude of morphological features are grown on SiO2/Si substrates by electron cyclotron resonance - plasma enhanced chemical vapor deposition (ECR-PECVD). CH4 is used as source gas with Ar and H2 as dilutants. Field emission scanning electron microscopy, high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy are used to study the structural and morphological features of the grown films. Herein, we demonstrate, how the morphology can be tuned from planar to vertical structure using single control parameter namely, dilution of CH4 with Ar and/or H2. Our results show that the competitive growth and etching processes dictate the morphology of the NGSs. While Ar-rich composition favors vertically oriented graphene nanosheets, H2-rich composition aids growth of planar films. Raman analysis reveals dilution of CH4 with either Ar or H2 or in combination helps to improve the structural quality of the films. Line shape analysis of Raman 2D band shows nearly symmetric Lorentzian profile which confirms the turbostratic nature of the grown NGSs. Further, this aspect is elucidated by HRTEM studies by observing elliptical diffraction pattern. Based on these experiments, a comprehensive understanding is obtained on the growth and structural properties of NGSs grown over a wide range of feedstock compositions.



قيم البحث

اقرأ أيضاً

Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 {deg}C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms intercalate at this high temperature, and during the deposition process, through defects of the molybdenum disulfide surface such as steps and wrinkles. Post growth atomic force microscopy images reveal that circular flat graphene islands have grown at a high yield. They consist of two graphene layers stacked on top of each other with a total thickness of 0.74 nm. Our results demonstrate direct, simple and high yield growth of graphene/molybdenum disulfide heterostructures, which can be of high importance in future nanoelectronic and optoelectronic applications.
The usage of molten salts, e.g., Na2MoO4 and Na2WO4, has shown great success in the growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). In comparison with the halide salt (i.e., NaCl, NaBr, KI)- assisted growth (Salt 1.0), the molten salt-assisted vapor-liquid-solid (VLS) growth technique (Salt 2.0) has improved the reproducibility, efficiency and scalability of synthesizing 2D TMDCs. However, the growth of large-area MoSe2 and WTe2 is still quite challenging with the use Salt 2.0 technique. In this study, a renewed Salt 2.0 technique using mixed salts (e.g., Na2MoO4-Na2SeO3 and Na2WO4-Na2TeO3) is developed for the enhanced CVD growth of 2D MoSe2 and WTe2 crystals with large grain size and yield. Continuous monolayer MoSe2 film with grain size of 100-250 {mu}m or isolated flakes up to ~ 450 {mu}m is grown on a halved 2-inch SiO2/Si wafer. Our study further confirms the synergistic effect of Na+ and SeO32- in the enhanced CVD growth of wafer-scale monolayer MoSe2 film. And thus, the addition of Na2SeO3 and Na2TeO3 into the transition metal salts could be a general strategy for the enhanced CVD growth of many other 2D selenides and tellurides.
Recently, monolayer SnS, a two-dimensional group IV monochalcogenide, was grown on a mica substrate at the micrometer-size scale by the simple physical vapor deposition (PVD), resulting in the successful demonstration of its in-plane room temperature ferroelectricity. However, the reason behind the monolayer growth remains unclear because it had been considered that the SnS growth inevitably results in a multilayer thickness due to the strong interlayer interaction arising from lone pair electrons. Here, we investigate the PVD growth of monolayer SnS from two different feed powders, highly purified SnS and commercial phase-impure SnS. Contrary to expectations, it is suggested that the mica substrate surface is modified by sulfur evaporated from the Sn2S3 contaminant in the as-purchased powder and the lateral growth of monolayer SnS is facilitated due to the enhanced surface diffusion of SnS precursor molecules, unlike the growth from the highly purified powder. This insight provides a guide to identify further controllable growth conditions.
A Kinetic Monte Carlo model that simulates the growth of thin films under conditions typically encountered in plasma enhanced chemical vapor deposition experiments is presented. The model is intended to reproduce the growth of two different types of materials (amorphous nanocolumnar and anisotropic-polycrystalline) in a coarse-grained fashion. In order to show the advantages and limitations of the model, the microstructure, texture, and scaling properties of TiO2 and ZnO thin-film growth are obtained under several growth conditions and compared with available experimental data obtained by X-Ray Diffraction, analysis of texture coefficients, Atomic Force Microscopy and Scanning Electron Microscopy.
This work investigates the growth of B-C-N layers by chemical vapor deposition using methylamine borane (MeAB) as single-source precursor. MeAB has been synthesized and characterized, paying particular attention to the analysis of its thermolysis pro ducts, which are the gaseous precursors for B-C-N growth. Samples have been grown on Cu foils and transferred onto different substrates for their morphological, structural, chemical, electronic and optical characterizations. The results of these characterizations indicate a segregation of h-BN and Graphene-like (Gr) domains. However, there is an important presence of B and N interactions with C at the Gr borders, and of C interacting at the h-BN-edges, respectively, in the obtained nano-layers. In particular, there is significant presence of C-N bonds, at Gr/h-BN borders and in the form of N doping of Gr domains. The overall B:C:N contents in the layers is close to 1:3:1.5. A careful analysis of the optical bandgap determination of the obtained B-C-N layers is presented, discussed and compared with previous seminal works with samples of similar composition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا