ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing topology by heating: Quantized circular dichroism in ultracold atoms

62   0   0.0 ( 0 )
 نشر من قبل Nathan Goldman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic 2D Chern insulator subjected to a circular time-periodic perturbation: due to the systems chiral nature, the depletion rate is shown to depend on the orientation of the circular shake. Most importantly, taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number of the populated band ($ u$): this differential integrated rate is directly related to the strength of the driving field through the quantized coefficient $eta_0!=! u /hbar^2$. Contrary to the integer quantum Hall effect, this quantized response is found to be non-linear with respect to the strength of the driving field and it explicitly involves inter-band transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the non-linear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion-rate measurements as a universal probe for topological order in quantum matter.

قيم البحث

اقرأ أيضاً

The dissipative response of a quantum system upon a time-dependent drive can be exploited as a probe of its geometric and topological properties. In this work, we explore the implications of such phenomena in the context of two-dimensional gases subj ected to a uniform magnetic field. It is shown that a filled Landau level exhibits a quantized circular dichroism, which can be traced back to its underlying non-trivial topology. Based on selection rules, we find that this quantized circular dichroism can be suitably described in terms of Rabi oscillations, whose frequencies satisfy simple quantization laws. Moreover, we discuss how these quantized dissipative responses can be probed locally, both in the bulk and at the boundaries of the quantum Hall system. This work suggests alternative forms of topological probes in quantum systems based on circular dichroism.
We dress atoms with multiple-radiofrequency fields and investigate the spectrum of transitions driven by an additional probe field. A complete theoretical description of this rich spectrum is presented, in which we find allowed transitions and determ ine their amplitudes using the resolvent formalism. Experimentally, we observe transitions up to sixth order in the probe field using radiofrequency spectroscopy of Bose-Einstein condensates trapped in single- and multiple-radiofrequency-dressed potentials. We find excellent agreement between theory and experiment, including the prediction and verification of previously unobserved transitions, even in the single-radiofrequency case.
Robustness against perturbations lies at the heart of topological phenomena. If, however, a perturbation such as disorder becomes dominant, it may cause a topological phase transition between topologically non-trivial and trivial phases. Here we expe rimentally reveal the competition and interplay between topology and quasi-periodic disorder in a Thouless pump realized with ultracold atoms in an optical lattice, by creating a quasi-periodic potential from weak to strong regimes in a controllable manner. We demonstrate a disorder-induced pumping in which the presence of quasi-periodic disorder can induce a non-trivial pump for a specific pumping sequence, while no pump is observed in the clean limit. Our highly controllable system, which can also straightforwardly incorporate interatomic interaction, could be a unique platform for studying various disorder-related novel effects in a wide range of topological quantum phenomena.
Time-periodic (Floquet) drive is a powerful method to engineer quantum phases of matter, including fundamentally non-equilibrium states that are impossible in static Hamiltonian systems. One characteristic example is the anomalous Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator, yet is amenable to bulk localization. We study the response of this topological system to time-dependent noise, which breaks the topologically protecting Floquet symmetry. Surprisingly, we find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude. We trace this robust topology to an interplay between diffusion and Pauli blocking of edge state decay, which we expect should be robust against interactions. We determine the boundaries of the topological phase for a system with spatial disorder numerically through level statistics, and corroborate our results in the limit of vanishing disorder through an analytical Floquet superoperator approach. This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase. We comment on quantization of other topological responses in the absence of Floquet symmetry and potential experimental realizations.
Ultracold atom research presents many avenues to study problems at the forefront of physics. Due to their unprecedented controllability, these systems are ideally suited to explore new exotic states of matter, which is one of the key driving elements of the condensed matter research. One such topic of considerable importance is topological insulators, materials that are insulating in the interior but conduct along the edges. Quantum Hall and its close cousin Quantum Spin Hall states belong to the family of these exotic states and are the subject of this chapter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا