ﻻ يوجد ملخص باللغة العربية
Robustness against perturbations lies at the heart of topological phenomena. If, however, a perturbation such as disorder becomes dominant, it may cause a topological phase transition between topologically non-trivial and trivial phases. Here we experimentally reveal the competition and interplay between topology and quasi-periodic disorder in a Thouless pump realized with ultracold atoms in an optical lattice, by creating a quasi-periodic potential from weak to strong regimes in a controllable manner. We demonstrate a disorder-induced pumping in which the presence of quasi-periodic disorder can induce a non-trivial pump for a specific pumping sequence, while no pump is observed in the clean limit. Our highly controllable system, which can also straightforwardly incorporate interatomic interaction, could be a unique platform for studying various disorder-related novel effects in a wide range of topological quantum phenomena.
We investigate the spin-polarized chain of ultracold fermionic atoms with spin-3/2 described by the fermionic Hubbard model with SU(4) symmetric attractive interaction. The competition of bound pairs, trions, quartets and unbound atoms is studied ana
We propose a two-dimensional (2D) version of Thouless pumping that can be realized by using ultracold atoms in optical lattices. To be specific, we consider a 2D square lattice tight-binding model with an obliquely introduced superlattice. It is demo
More than 30 years ago, Thouless introduced the concept of a topological charge pump that would enable the robust transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transpo
We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic 2D Chern insulator subjected
The study of topological effects in physics is a hot area, and only recently researchers were able to address the important issues of topological properties of interacting quantum systems. But it is still a great challenge to describe multi-particle