ترغب بنشر مسار تعليمي؟ اضغط هنا

Density dependence of 2p-2h meson-exchange currents

354   0   0.0 ( 0 )
 نشر من قبل Maria B. Barbaro
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the density dependence of the contribution of meson-exchange currents to the lepton-nucleus inclusive cross section in the two-particle two-hole channel. The model is based on the Relativistic Fermi Gas, where each nucleus is characterized by its Fermi momentum $k_F$. We find that the 2p-2h nuclear response functions at their peaks scale as $A k_F^2$ for Fermi momentum going from 200 to 300 MeV/c and momentum transfer $q$ from $2k_F$ to 2 GeV/c. This behavior is different from what is found for the quasielastic response, which scales as $A/k_F$. Additionally, the deep scaling region is also discussed and there the usual scaling behavior is found to be preferable.



قيم البحث

اقرأ أيضاً

We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $sigma$-model together with weak excitation of the $Delta(1232)$ resonance and its subsequent decay into $Npi$. With these currents we compute the five 2p-2h response functions contributing to $( u_l,l^-)$ and $(overline{ u}_l,l^+)$ reactions in the relativistic Fermi gas model. The total current is the sum of vector and axial two-body currents. The vector current is related to the electromagnetic MEC operator that contributes to electron scattering. This allows one to check our model by comparison with the results of De Pace {em et al.,} Nuclear Physics A 726 (2003) 303. Thus our model is a natural extension of that model to the weak sector with the addition of the axial MEC operator. The dependences of the response functions on several ingredients of the approach are analyzed. Specifically we discuss relativistic effects, quantify the size of the direct-exchange interferences, and the relative importance of the axial versus vector current.
223 - A. De Pace 2004
Following recent studies of inclusive electron scattering from nuclei at high energies which focused on two-nucleon emission mediated by meson-exchange currents, in this work the superscaling behavior of such contributions is investigated. Comparison s are made with existing data below the quasielastic peak where at high momentum transfers scaling of the second kind is known to be excellent and scaling of the first kind is good, in the proximity of the peak where both 1p-1h and 2p-2h contributions come into play, and above the peak where inelasticity becomes important and one finds scaling violations of the two kinds.
The effects of the phonon-phonon coupling on the beta-decay rates of neutron-rich nuclei are studied in a microscopic model based on Skyrme-type interactions. The approach uses a finite-rank separable approximation of the Skyrme-type particle-hole (p -h) residual interaction. Very large two-quasiparticle spaces can thus be treated. A redistribution of the Gamow-Teller (G-T) strength is found due to the tensor correlations and the 2p-2h fragmentation of G-T states. As a result, the beta-decay half-lives are decreased significantly. Using the Skyrme interaction SGII together with a volume-type pairing interaction we illustrate this reduction effect by comparing with available experimental data for the Ni isotopes and neutron-rich N=50 isotones. We give predictions for 76Fe and 80Ni in comparison with the case of the doubly-magic nucleus 78Ni which is an important waiting point in the r-process.
We review some recent progress in the study of electroweak interactions in nuclei within the SuSAv2-MEC model. The model has the capability to predict (anti)neutrino scattering observables on different nuclei. The theoretical predictions are compared with the recent T2K $ u_mu-^{16}$O data and good agreement is found at all kinematics. The results are very similar to those obtained for $ u_mu-^{12}$C scattering, except at low energies, where some differences emerge. The role of meson-exchange currents in the two-particle two-hole channel is analyzed in some detail. In particular it is shown that the density dependence of these contributions is different from what is found for the quasielastic response.
We develop an approach for calculating matrix elements of meson exchange currents between 3N basis states in (jJ)-coupling and a 3N bound state. The contribution generated by $pi$- and $rho$-exchange are included in the consideration. The matrix elem ents are expressed in terms of multiple integrals in the momentum space. We apply a technique of the partial wave decompositions and carry out some angular integrations in closed form. Different representations appropriate for numerical calculations are derived for the matrix elements of interest. The momentum dependences of the matrix elements are studied and benchmark results are presented. The approach developed is of interest for the investigations of deuteron- proton radiative capture and ^3He photo- and electrodisintegration when the interaction in the initial or final nuclear states is taken into account by solving the Faddeev equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا