ترغب بنشر مسار تعليمي؟ اضغط هنا

Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional Neural Network

58   0   0.0 ( 0 )
 نشر من قبل Artem Sevastopolsky
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Glaucoma is the second leading cause of blindness all over the world, with approximately 60 million cases reported worldwide in 2010. If undiagnosed in time, glaucoma causes irreversible damage to the optic nerve leading to blindness. The optic nerve head examination, which involves measurement of cup-to-disc ratio, is considered one of the most valuable methods of structural diagnosis of the disease. Estimation of cup-to-disc ratio requires segmentation of optic disc and optic cup on eye fundus images and can be performed by modern computer vision algorithms. This work presents universal approach for automatic optic disc and cup segmentation, which is based on deep learning, namely, modification of U-Net convolutional neural network. Our experiments include comparison with the best known methods on publicly available databases DRIONS-DB, RIM-ONE v.3, DRISHTI-GS. For both optic disc and cup segmentation, our method achieves quality comparable to current state-of-the-art methods, outperforming them in terms of the prediction time.

قيم البحث

اقرأ أيضاً

In this work, we propose a special cascade network for image segmentation, which is based on the U-Net networks as building blocks and the idea of the iterative refinement. The model was mainly applied to achieve higher recognition quality for the ta sk of finding borders of the optic disc and cup, which are relevant to the presence of glaucoma. Compared to a single U-Net and the state-of-the-art methods for the investigated tasks, very high segmentation quality has been achieved without a need for increasing the volume of datasets. Our experiments include comparison with the best-known methods on publicly available databases DRIONS-DB, RIM-ONE v.3, DRISHTI-GS, and evaluation on a private data set collected in collaboration with University of California San Francisco Medical School. The analysis of the architecture details is presented, and it is argued that the model can be employed for a broad scope of image segmentation problems of similar nature.
The Medico: Multimedia Task 2020 focuses on developing an efficient and accurate computer-aided diagnosis system for automatic segmentation [3]. We participate in task 1, Polyps segmentation task, which is to develop algorithms for segmenting polyps on a comprehensive dataset. In this task, we propose methods combining Residual module, Inception module, Adaptive Convolutional neural network with U-Net model, and PraNet for semantic segmentation of various types of polyps in endoscopic images. We select 5 runs with different architecture and parameters in our methods. Our methods show potential results in accuracy and efficiency through multiple experiments, and our team is in the Top 3 best results with a Jaccard index of 0.765.
In recent years, computer-aided diagnosis has become an increasingly popular topic. Methods based on convolutional neural networks have achieved good performance in medical image segmentation and classification. Due to the limitations of the convolut ion operation, the long-term spatial features are often not accurately obtained. Hence, we propose a TransClaw U-Net network structure, which combines the convolution operation with the transformer operation in the encoding part. The convolution part is applied for extracting the shallow spatial features to facilitate the recovery of the image resolution after upsampling. The transformer part is used to encode the patches, and the self-attention mechanism is used to obtain global information between sequences. The decoding part retains the bottom upsampling structure for better detail segmentation performance. The experimental results on Synapse Multi-organ Segmentation Datasets show that the performance of TransClaw U-Net is better than other network structures. The ablation experiments also prove the generalization performance of TransClaw U-Net.
To help prevent motor vehicle accidents, there has been significant interest in finding an automated method to recognize signs of driver distraction, such as talking to passengers, fixing hair and makeup, eating and drinking, and using a mobile phone . In this paper, we present an automated supervised learning method called Drive-Net for driver distraction detection. Drive-Net uses a combination of a convolutional neural network (CNN) and a random decision forest for classifying images of a driver. We compare the performance of our proposed Drive-Net to two other popular machine-learning approaches: a recurrent neural network (RNN), and a multi-layer perceptron (MLP). We test the methods on a publicly available database of images acquired under a controlled environment containing about 22425 images manually annotated by an expert. Results show that Drive-Net achieves a detection accuracy of 95%, which is 2% more than the best results obtained on the same database using other methods
189 - Zhihao Shang , Di Bo 2021
Convolutional networks have been widely applied for computer vision system. Encouraged by these results, a U-Net convolutional network was applied to recognition of vessels and materials in chemistry lab using the recent Vector-LabPics dataset, which contains 2187 images of materials within mostly transparent vessels in a chemistry lab and other general settings, labeled with 13 classes. By optimizing hyperparameters including learning rates and learning rate decays, 87% accuracy in vessel recognition was achieved. In the case of relatively small training and test sets (relatively rare materials states, the number of training set samples less than 500 and the number of test set samples less than 100), a comprehensive improvement over 18% in IoU and 19% in accuracy for the best model were achieved. Further improvements may be achievable by incorporating improved convolutional network structure into our models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا