ﻻ يوجد ملخص باللغة العربية
The Medico: Multimedia Task 2020 focuses on developing an efficient and accurate computer-aided diagnosis system for automatic segmentation [3]. We participate in task 1, Polyps segmentation task, which is to develop algorithms for segmenting polyps on a comprehensive dataset. In this task, we propose methods combining Residual module, Inception module, Adaptive Convolutional neural network with U-Net model, and PraNet for semantic segmentation of various types of polyps in endoscopic images. We select 5 runs with different architecture and parameters in our methods. Our methods show potential results in accuracy and efficiency through multiple experiments, and our team is in the Top 3 best results with a Jaccard index of 0.765.
Sturge-Weber syndrome (SWS) is a vascular malformation disease, and it may cause blindness if the patients condition is severe. Clinical results show that SWS can be divided into two types based on the characteristics of scleral blood vessels. Theref
Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve
Development of deep learning systems for biomedical segmentation often requires access to expert-driven, manually annotated datasets. If more than a single expert is involved in the annotation of the same images, then the inter-expert agreement is no
Segmentation of multiple anatomical structures is of great importance in medical image analysis. In this study, we proposed a $mathcal{W}$-net to simultaneously segment both the optic disc (OD) and the exudates in retinal images based on the multi-ta
Fine-tuning a network which has been trained on a large dataset is an alternative to full training in order to overcome the problem of scarce and expensive data in medical applications. While the shallow layers of the network are usually kept unchang