ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Networks with Manifold Learning for Diabetic Retinopathy Detection

94   0   0.0 ( 0 )
 نشر من قبل Arjun Raj Rajanna
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Widespread outreach programs using remote retinal imaging have proven to decrease the risk from diabetic retinopathy, the leading cause of blindness in the US. However, this process still requires manual verification of image quality and grading of images for level of disease by a trained human grader and will continue to be limited by the lack of such scarce resources. Computer-aided diagnosis of retinal images have recently gained increasing attention in the machine learning community. In this paper, we introduce a set of neural networks for diabetic retinopathy classification of fundus retinal images. We evaluate the efficiency of the proposed classifiers in combination with preprocessing and augmentation steps on a sample dataset. Our experimental results show that neural networks in combination with preprocessing on the images can boost the classification accuracy on this dataset. Moreover the proposed models are scalable and can be used in large scale datasets for diabetic retinopathy detection. The models introduced in this paper can be used to facilitate the diagnosis and speed up the detection process.


قيم البحث

اقرأ أيضاً

148 - Yehui Yang , Tao Li , Wensi Li 2017
We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our me thod can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm.
We proposed a deep learning method for interpretable diabetic retinopathy (DR) detection. The visual-interpretable feature of the proposed method is achieved by adding the regression activation map (RAM) after the global averaging pooling layer of th e convolutional networks (CNN). With RAM, the proposed model can localize the discriminative regions of an retina image to show the specific region of interest in terms of its severity level. We believe this advantage of the proposed deep learning model is highly desired for DR detection because in practice, users are not only interested with high prediction performance, but also keen to understand the insights of DR detection and why the adopted learning model works. In the experiments conducted on a large scale of retina image dataset, we show that the proposed CNN model can achieve high performance on DR detection compared with the state-of-the-art while achieving the merits of providing the RAM to highlight the salient regions of the input image.
93 - David Le , Minhaj Alam , Cham Yao 2019
Purpose: To test the feasibility of using deep learning for optical coherence tomography angiography (OCTA) detection of diabetic retinopathy (DR). Methods: A deep learning convolutional neural network (CNN) architecture VGG16 was employed for this s tudy. A transfer learning process was implemented to re-train the CNN for robust OCTA classification. In order to demonstrate the feasibility of using this method for artificial intelligence (AI) screening of DR in clinical environments, the re-trained CNN was incorporated into a custom developed GUI platform which can be readily operated by ophthalmic personnel. Results: With last nine layers re-trained, CNN architecture achieved the best performance for automated OCTA classification. The overall accuracy of the re-trained classifier for differentiating healthy, NoDR, and NPDR was 87.27%, with 83.76% sensitivity and 90.82% specificity. The AUC metrics for binary classification of healthy, NoDR and DR were 0.97, 0.98 and 0.97, respectively. The GUI platform enabled easy validation of the method for AI screening of DR in a clinical environment. Conclusion: With a transfer leaning process to adopt the early layers for simple feature analysis and to re-train the upper layers for fine feature analysis, the CNN architecture VGG16 can be used for robust OCTA classification of healthy, NoDR, and NPDR eyes. Translational Relevance: OCTA can capture microvascular changes in early DR. A transfer learning process enables robust implementation of convolutional neural network (CNN) for automated OCTA classification of DR.
139 - Li Tian , Liyan Ma , Zhijie Wen 2020
Diabetic retinopathy (DR) is one of the leading causes of blindness. However, no specific symptoms of early DR lead to a delayed diagnosis, which results in disease progression in patients. To determine the disease severity levels, ophthalmologists n eed to focus on the discriminative parts of the fundus images. In recent years, deep learning has achieved great success in medical image analysis. However, most works directly employ algorithms based on convolutional neural networks (CNNs), which ignore the fact that the difference among classes is subtle and gradual. Hence, we consider automatic image grading of DR as a fine-grained classification task, and construct a bilinear model to identify the pathologically discriminative areas. In order to leverage the ordinal information among classes, we use an ordinal regression method to obtain the soft labels. In addition, other than only using a categorical loss to train our network, we also introduce the metric loss to learn a more discriminative feature space. Experimental results demonstrate the superior performance of the proposed method on two public IDRiD and DeepDR datasets.
110 - Yijin Huang , Li Lin , Pujin Cheng 2021
Manually annotating medical images is extremely expensive, especially for large-scale datasets. Self-supervised contrastive learning has been explored to learn feature representations from unlabeled images. However, unlike natural images, the applica tion of contrastive learning to medical images is relatively limited. In this work, we propose a self-supervised framework, namely lesion-based contrastive learning for automated diabetic retinopathy (DR) grading. Instead of taking entire images as the input in the common contrastive learning scheme, lesion patches are employed to encourage the feature extractor to learn representations that are highly discriminative for DR grading. We also investigate different data augmentation operations in defining our contrastive prediction task. Extensive experiments are conducted on the publicly-accessible dataset EyePACS, demonstrating that our proposed framework performs outstandingly on DR grading in terms of both linear evaluation and transfer capacity evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا