ﻻ يوجد ملخص باللغة العربية
The output impedance matrices of three-phase grid-connected voltage source converters (VSCs) are widely used in power system stability analysis. Regardless of how the impedance is modeled, there always exist coupling terms in the impedance matrix, which makes the system a multi-input- multi-output (MIMO) system. Some approximation approaches omit the coupling terms so that a three-phase system can be treated like a single-phase one, and the impedance-based stability criterion for a single-input-single-output (SISO) system is applicable. However, such handling may result in analytical errors or even incorrect conclusions in a mirror frequency coupled system. By introducing the concept of generalized- impedances, this letter proposes a new stability criterion based on a virtual SISO system, which can effectively handle the coupling terms. Further, the effects of the phase-locked-loop (PLL) parameters on system stability are studied based on the proposed criterion. The effectiveness of the proposed criterion is verified by a hardware-in-the-loop (HIL) simulation based on RT-LAB.
The output impedance matrix of a grid-connected converter plays an important role in analyzing system stability. Due to the dynamics of the DC-link control and the phase locked loop (PLL), the output impedance matrices of the converter and grid are d
We apply a novel data-enabled predictive control (DeePC) algorithm in grid-connected power converters to perform safe and optimal control. Rather than a model, the DeePC algorithm solely needs input/output data measured from the unknown system to pre
The renewable energy is connected to the power grid through power electronic converters, which are lack of make the inertia of synchronous generator/machine (SM) be lost. The increasing penetration of renewable energy in power system weakens the freq
The modern power system features high penetration of power converters due to the development of renewables, HVDC, etc. Currently, the controller design and parameter tuning of power converters heavily rely on rich engineering experience and extrapola
Having sufficient grid-forming sources is one of the necessary conditions to guarantee the stability in a power system hosting a very large share of inverter-based generation. The grid-forming function has been historically fulfilled by synchronous m