ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary gravities on a low budget: sample test of a Mars rover wheel

99   0   0.0 ( 0 )
 نشر من قبل Ernesto Altshuler
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an instrument for a wide spectrum of experiments on gravities other than our planets. It is based on a large Atwood machine where one of the loads is a bucket equipped with a single board computer and different sensors. The computer is able to detect the falling (or rising) and then the stabilization of the effective gravity and to trigger actuators depending on the experiment. Gravities within the range 0.4 g to 1.2 g are easily achieved with acceleration noise of the order of 0.01 g. Under Martian gravity we are able to perform experiments of approximately 1.5 seconds duration. The system includes features such as WiFi and a web interface with tools for the setup, monitor and the data analysis of the experiment. We briefly show a case study in testing the performance of a model Mars rover wheel in low gravities.



قيم البحث

اقرأ أيضاً

The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agencys Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the in terest of studying planet - satellite systems. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. We achieved, on average, mHz precision (30 {mu}m/s at a 10 seconds integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ~50 m.
The Planetary Instrument for X-ray Lithochemistry (PIXL) is a micro-focus X-ray fluorescence spectrometer mounted on the robotic arm of NASAs Perseverance rover. PIXL will acquire high spatial resolution observations of rock and soil chemistry, rapid ly analyzing the elemental chemistry of a target surface. In 10 seconds, PIXL can use its powerful 120 micrometer diameter X-ray beam to analyze a single, sand-sized grain with enough sensitivity to detect major and minor rock-forming elements, as well as many trace elements. Over a period of several hours, PIXL can autonomously scan an area of the rock surface and acquire a hyperspectral map comprised of several thousand individual measured points.
We present the biological results of some experiments performed in the Padua simulators of planetary environments, named LISA, used to study the limit of bacterial life on the planet Mars. The survival of Bacillus strains for some hours in Martian environment is shortly discussed.
The chaotic behaviour of the motion of the planets in our Solar System is well established. In this work to model a hypothetical extrasolar planetary system our Solar System was modified in such a way that we replaced the Earth by a more massive plan et and let the other planets and all the orbital elements unchanged. The major result of former numerical experiments with a modified Solar System was the appearance of a chaotic window at $kappa_E in (4,6)$, where the dynamical state of the system was highly chaotic and even the body with the smallest mass escaped in some cases. On the contrary for very large values of the mass of the Earth, even greater than that of Jupiter regular dynamical behaviour was observed. In this paper the investigations are extended to the complete Solar System and showed, that this chaotic window does still exist. Tests in different Solar Systems clarified that including only Jupiter and Saturn with their actual masses together with a more massive Earth ($4 < kappa_E < 6$) perturbs the orbit of Mars so that it can even be ejected from the system. Using the results of the Laplace-Lagrange secular theory we found secular resonances acting between the motions of the nodes of Mars, Jupiter and Saturn. These secular resonances give rise to strong chaos, which is the cause of the appearance of the instability window.
Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for character ization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {mu}m effective radius during northern summer and a 2 {mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{deg}. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا