ترغب بنشر مسار تعليمي؟ اضغط هنا

A Planetary System with an Escaping Mars

93   0   0.0 ( 0 )
 نشر من قبل \\'Aron S\\\"uli Dr.
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chaotic behaviour of the motion of the planets in our Solar System is well established. In this work to model a hypothetical extrasolar planetary system our Solar System was modified in such a way that we replaced the Earth by a more massive planet and let the other planets and all the orbital elements unchanged. The major result of former numerical experiments with a modified Solar System was the appearance of a chaotic window at $kappa_E in (4,6)$, where the dynamical state of the system was highly chaotic and even the body with the smallest mass escaped in some cases. On the contrary for very large values of the mass of the Earth, even greater than that of Jupiter regular dynamical behaviour was observed. In this paper the investigations are extended to the complete Solar System and showed, that this chaotic window does still exist. Tests in different Solar Systems clarified that including only Jupiter and Saturn with their actual masses together with a more massive Earth ($4 < kappa_E < 6$) perturbs the orbit of Mars so that it can even be ejected from the system. Using the results of the Laplace-Lagrange secular theory we found secular resonances acting between the motions of the nodes of Mars, Jupiter and Saturn. These secular resonances give rise to strong chaos, which is the cause of the appearance of the instability window.

قيم البحث

اقرأ أيضاً

We report on the experimental investigation of the dependence of the elastic enhancement, i.e., enhancement of scattering in backward direction over scattering in other directions of a wave-chaotic system with partially violated time-reversal (T ) in variance on its openness. The elastic enhancement factor is a characteristic of quantum chaotic scattering which is of particular importance in experiments, like compound-nuclear reactions, where only cross sections, i.e., the moduli of the associated scattering matrix elements are accessible. In the experiment a quantum billiard with the shape of a quarter bow-tie, which generates a chaotic dynamics, is emulated by a flat microwave cavity. Partial T-invariance violation of varying strength 0 < xi < 1 is induced by two magnetized ferrites. The openness is controlled by increasing the number M of open channels, 2 < M < 9, while keeping the internal absorption unchanged. We investigate the elastic enhancement as function of xi and find that for a fixed M it decreases with increasing time-reversal invariance violation, whereas it increases with increasing openness beyond a certain value of xi > 0.2. The latter result is surprising because it is opposite to that observed in systems with preserved T invariance (xi = 0). We come to the conclusion that the effect of T -invariance violation on the elastic enhancement then dominates over the openness, which is crucial for experiments which rely on enhanced backscattering, since, generally, a decrease of the openness is unfeasible. Motivated by these experimental results we, furthermore, performed theoretical investigations based on random matrix theory which confirm our findings.
On July 25 2017 a multi-step Forbush decrease (FD) with the remarkable total amplitude of more than 15% was observed by MSL/RAD at Mars. We find that these particle signatures are related to very pronounced plasma and magnetic field signatures detect ed in situ by STEREO-A on July 24 2017, with a higher than average total magnetic field strength reaching more than 60 nT. In the observed time period STEREO-A was at a relatively small longitudinal separation (46 degrees) to Mars and both were located at the back side of the Sun as viewed from Earth. We analyse a number of multi-spacecraft and multi-instrument (both in situ and remote-sensing) observations, and employ modelling to understand these signatures. We find that the solar sources are two CMEs which erupted on July 23 2017 from the same source region on the back side of the Sun as viewed from Earth. Moreover, we find that the two CMEs interact non-uniformly, inhibiting the expansion of one of the CMEs in STEREO-A direction, whereas allowing it to expand more freely in the Mars direction. The interaction of the two CMEs with the ambient solar wind adds up to the complexity of the event, resulting in a long, sub-structured interplanetary disturbance at Mars, where different sub-structures correspond to different steps of the FD, adding-up to a globally large-amplitude FD.
We consider the following game played in the Euclidean plane: There is any countable set of unit speed lions and one fast man who can run with speed $1+varepsilon$ for some value $varepsilon>0$. Can the man survive? We answer the question in the affirmative for any $varepsilon>0$.
Composition of terrestrial planets records planetary accretion, core-mantle and crust-mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. E arth and Mars are equally enriched in refractory elements (1.9 $times$ CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disks lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon-forming debris ring with mostly a proto-Earths mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt. In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable.
FFT-based solvers are increasingly used by many researcher groups interested in modelling the mechanical behavior associated to a heterogeneous microstructure. A development is reported here that concerns the viscoelastic behavior of composite struct ures generally studied experimentally through Dynamic Mechanical Analysis (DMA). A parallelized computation code developed under complex-valued quantities provides virtual DMA experiments directly in the frequency domain on a heterogenous system described by a voxel grid of mechanical properties. The achieved precision and computation times are very good. An effort has been made to show the application of such virtual DMA tool starting from two examples found in the literature: the modelling of glassy/amorphous systems at a small scale and the modelling of experimental data obtained in temperature sweeping mode by DMA on a particulate composite made of glass beads and a polystyrene matrix, at a larger scale. Both examples show how virtual DMA can contribute to question, analyze, understand relaxation phenomena either on the theoretical or experimental point of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا