ترغب بنشر مسار تعليمي؟ اضغط هنا

Results from the October 2014 CERN test beam of LumiCal

124   0   0.0 ( 0 )
 نشر من قبل Aharon Levy
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A prototype of a luminometer, designed for a future e+e- collider detector, was tested in the CERN PS accelerator T9 testbeam. The objective of this test beam was to demonstrate a multi-plane operation, to study the development of the electromagnetic shower and to compare it with MC simulations.

قيم البحث

اقرأ أيضاً

Operating conditions and challenging demands of present and future accelerator experiments result in new requirements on detector systems. There are many ongoing activities aimed to develop new technologies and to improve the properties of detectors based on existing technologies. Our work is dedicated to development of Transition Radiation Detectors (TRD) suitable for different applications. In this paper results obtained in beam tests at SPS accelerator at CERN with the TRD prototype based on straw technology are presented. TRD performance was studied as a function of thickness of the transition radiation radiator and working gas mixture pressure.
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2times 6.0times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SPs performance, including noise and gain measurements, $dE/dx$ calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SPs successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
Two modules of the AD detector have been studied with the test beam at the T10 facility at CERN. The AD detector is made of scintillator pads read out by wave-length shifters (WLS)coupled to clean fibres that carry the produced light to photo-multipl ier tubes (PMTs). In ALICE the AD is used to trigger and study the physics of diffractive and ultra-peripheral collisions as well as for a variety of technical tasks like beam-gas background monitoring or as a luminometer. The position dependence of the modules efficiency has been measured and the effect of hits on the WLS or PMTs has been evaluated. The charge deposited by pions and protons has been measured at different momenta of the test beam. The time resolution is determined as a function of the deposited charge. These results are important ingredients to better understand the AD detector, to benchmark the corresponding simulations, and very importantly they served as a baseline for a similar device, the Forward Diffractive Detector (FDD), being currently built and that will be in operation in ALICE during the LHC Runs 3 and 4.
109 - Oleksandr Borysov 2017
LumiCal is a sampling electromagnetic calorimeter designed for the precise measurement of integrated luminosity in electron positron linear collider experiments. The present report contains a description and results of the first beam test of a multil ayer LumiCal prototype with four silicon detector planes. A 5 GeV electron beam from the CERN PS T9 facility was used to study the performance of the LumiCal prototype. Presented results are mainly focused on the transverse structure of the observed electromagnetic shower and the Moli`ere radius measurement. A comparison with MC simulation is also discussed.
Gas detector are very light instrument used in high energy physics to measure the particle properties: position and momentum. Through high electric field is possible to use the Gas Electron Multiplier (GEM) technology to detect the charged particles and to exploit their properties to construct a large area detector, such as the new IT for BESIII. The state of the art in the GEM production allows to create very large area GEM foils (up to 50x100 $mathrm{cm}^2$) and thanks to the small thickness of these foils is it possible to shape it to the desired form: a Cylindrical Gas Electron Multiplier (CGEM) is then proposed. The innovative construction technique based on Rohacell, a PMI foam, will give solidity to cathode and anode with a very low impact on material budget. The entire detector is sustained by Permaglass rings glued at the edges. These rings are used to assembly the CGEM, together with a dedicated Vertical Insertion System and moreover they host the On-Detector electronic. The anode has been improved w.r.t. the state of the art through a jagged readout that minimize the inter-strip capacitance. The mechanical challenge of this detector requires a precision of the entire geometry within few hundreds of microns in the whole area. In this contribution an overview of the construction technique, the validation of this technique through the realization of a CGEM, and its first tests will be presented. These activities are performed within the framework of the BESIIICGEM Project (645664), funded by the European Commission in the action H2020-RISE-MSCA-2014.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا