ﻻ يوجد ملخص باللغة العربية
In this paper, we provide a novel dataset designed for camera invariant color constancy research. Camera invariance corresponds to the robustness of an algorithms performance when run on images of the same scene taken by different cameras. Accordingly, images in the database correspond to several lab and field scenes each of which are captured by three different cameras with minimal registration errors. The lab scenes are also captured under five different illuminations. The spectral responses of cameras and the spectral power distributions of the lab light sources are also provided, as they may prove beneficial for training future algorithms to achieve color constancy. For a fair evaluation of future methods, we provide guidelines for supervised methods with indicated training, validation and testing partitions. Accordingly, we evaluate a recently proposed convolutional neural network based color constancy algorithm as a baseline for future research. As a side contribution, this dataset also includes images taken by a mobile camera with color shading corrected and uncorrected results. This allows research on the effect of color shading as well.
In this paper, we describe a new large dataset for illumination estimation. This dataset, called INTEL-TAU, contains 7022 images in total, which makes it the largest available high-resolution dataset for illumination estimation research. The variety
We present Cross-Camera Convolutional Color Constancy (C5), a learning-based method, trained on images from multiple cameras, that accurately estimates a scenes illuminant color from raw images captured by a new camera previously unseen during traini
In this paper, we propose a novel color constancy approach, called Bag of Color Features (BoCF), building upon Bag-of-Features pooling. The proposed method substantially reduces the number of parameters needed for illumination estimation. At the same
In this paper, we propose a novel unsupervised color constancy method, called Probabilistic Color Constancy (PCC). We define a framework for estimating the illumination of a scene by weighting the contribution of different image regions using a graph
Temporal Color Constancy (CC) is a recently proposed approach that challenges the conventional single-frame color constancy. The conventional approach is to use a single frame - shot frame - to estimate the scene illumination color. In temporal CC, m